Lecture 2: Electrical Circuits

In an electrical circuit resistors may be connected in series, in parallel, or in various combinations of series and parallel connections.

2.1 Series circuits

In any series circuit a current I will flow through all parts of the circuit as a result of the potential difference supplied by a battery V_{T}. Therefore, we say that in a series circuit the current is common throughout that circuit.

When the current flows through each resistor in the circuit, for example, R_{1}, R_{2} and R_{3} in Fig. 2.1, there will be a voltage drop across that resistor whose value will be determined by the values of I and R, since from Ohm's law V = I X R. The sum of the individual voltage drops, for example, V_{1}, V_{2} and V_{3} in Fig. 2.1, will be equal to the total voltage V_{T}.

For any series circuit, I is common throughout the circuit and

$$
V_{T}=V_{1}+V_{2}+V_{3}
$$

FIGURE 2.1
Figure 2.1 shows three resistors $\mathrm{R}_{1}, \mathrm{R}_{2}$ and R_{3} connected end to end, i.e., in series, with a battery source of V volts. Since the circuit is closed a current I will flow and the p.d. across each resistor may be determined from the voltmeter readings V_{1}, V_{2} and V_{3}.

In a series circuit;

(a) The current I is the same in all parts of the circuit and hence the same reading is found on each of the two ammeters shown, and
(b) The sum of the voltages V_{1}, V_{2} and V_{3} is equal to the total applied voltage, V, i.e.

From Ohm's law:

$$
V_{1}=I R_{1}, V_{2}=I R_{2}, V_{3}=I I_{3} \text { and } V=I R
$$

Where R is the total circuit resistance.

$$
\begin{gathered}
\text { Since } V=V_{1}+V_{2}+V_{3} \\
\text { Then } I R=I R_{1}+I R_{2}+I R_{3}
\end{gathered}
$$

Dividing throughout by I gives,

$$
R=R_{1}+R_{2}+R_{3}
$$

Thus for a series circuit, the total resistance is obtained by adding together the values of the separate resistances.

Example 2.1

For the circuit shown in Figure 2.2, determine
(a) The battery voltage V ,
(b) The total resistance of the circuit, and
(c) The values of resistance of resistors $\mathrm{R}_{1}, \mathrm{R}_{2}$ and R_{3}, given that the Potential differences across $\mathrm{R}_{1}, \mathrm{R}_{2}$ and R_{3} are $5 \mathrm{~V}, 2 \mathrm{~V}$ and 6 V respectively.

FIGURE 2.2
Solution

$$
\begin{gathered}
\text { (a)Battery voltage } V=V_{1}+V_{2}+V_{3} \\
=5+2+6=13 \mathrm{~V} \\
\text { (b)Total circuit resistance } R=\frac{V}{I}=\frac{13}{4}=3.25 \Omega \\
\text { (c) Resistance } R_{1}=\frac{V_{1}}{I}=\frac{5}{4}=1.25 \Omega \\
\text { Resistance } R_{2}=\frac{V_{2}}{I}=\frac{2}{4}=0.5 \Omega \\
\text { Resistance } R_{1}=\frac{V_{3}}{I}=\frac{6}{4}=1.5 \Omega
\end{gathered}
$$

2.2 Parallel networks

In any parallel circuit, as shown in Fig. 2.3, the same voltage acts across all branches of the circuit. The total current will divide when it reaches a resistor junction, part of it flowing in each resistor. The sum of the individual currents, for example, I_{1}, I_{2} and I_{3} in Fig. 2.3, will be equal to the total current I_{T}.

Figure 2.3 below shows three resistors, $\mathrm{R}_{1}, \mathrm{R}_{2}$ and R_{3} connected across each other, i.e., in parallel, across a battery source of V volts.

FIGURE 2.3. A parallel circuit.

In a parallel circuit:

(a) The sum of the currents I_{1}, I_{2} and I_{3} is equal to the total circuit current, I, i.e. $I=I_{1}+I_{2}+I_{3}$, and
(b) The source p.d., V volts, is the same across each of the resistors. From Ohm's law:

$$
I_{1}=\frac{V}{R_{1}}, I_{2}=\frac{V}{R_{2}}, I_{3}=\frac{V}{R_{3}} \text { and } I=\frac{V}{R}
$$

Where R is the total circuit resistance.

$$
\begin{gathered}
\text { Since } I=I_{1}+I_{2}+I_{3} \\
\text { then, } \frac{V}{R}=\frac{V}{R_{1}}+\frac{V}{R_{2}}+\frac{V}{R_{3}}
\end{gathered}
$$

Dividing throughout by V gives:

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

This equation must be used when finding the total resistance R of a parallel circuit. For the special case of two resistors in parallel,

$$
\begin{gathered}
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}=\frac{R_{2}+R_{1}}{R_{1} R_{2}} \\
\frac{1}{R}=\frac{R_{2}+R_{1}}{R_{1} R_{2}}
\end{gathered}
$$

$$
\begin{aligned}
& R=\frac{R_{2} R_{1}}{R_{1}+R_{2}} \\
& \text { i.e, } \frac{\text { Product }}{\text { Sum }}
\end{aligned}
$$

Exercise 2.2

For the circuit shown in Figure 2.3, determine (a) the reading on the ammeter, and (b) the value of resistor R_{2}.

FIGURE 2.3
P.d across R_{1} is the same as the supply voltage V.

Hence supply voltage, $V=8 \times 5=40 \mathrm{~V}$
(a) Reading on ammeter, $I=\frac{V}{R_{3}}=\frac{40}{20}=2 A$
(b)Currentflowing through $R_{2}=\frac{V}{I_{2}}=\frac{40}{1}=40 \Omega$

