
LECTURE 4-Design of via Frequency Response-Lag Compensator 

  

4.1 Frequency Response Techniques  

• Frequency response methods are an alternative to the root locus for analyzing and designing 

feedback control systems.  

• The input to a physical system can be sinusoidally varying with known frequency, amplitude, and 

phase angle. The system’s output, which is also sinusoidal in the steady state, can then be measured 

for amplitude and phase angle at different frequencies. From this data the magnitude frequency 

response of the system, which is the ratio of the output amplitude to the input amplitude, can be plotted 

and used in place of an analytically obtained magnitude frequency response.   

• Similarly, we can obtain the phase response by finding the difference between the output phase 

angle and the input phase angle at different frequencies.  

• The frequency response of a system can be represented either as a polar plot or as separate 

magnitude and phase diagrams.   

• As a polar plot, the magnitude response is the length of a vector drawn from the origin to a point 

on the curve, whereas the phase response is the angle of that vector.   

• The polar plot of G(s)H(s) is known as a Nyquist diagram.  
• Separate magnitude and phase diagrams, sometimes referred to as Bode plots. The magnitude 

curve can be a plot of log-magnitude versus log-frequency. The other graph is a plot of phase angle 

versus log-frequency.   

• An advantage of Bode plots over the Nyquist diagram is that they can easily be drawn using 

asymptotic approximations to the actual curve.  

• Using the Nyquist criterion and Nyquist diagram, or the Nyquist criterion and Bode plots, we can 

determine a system’s stability.  

• Determining Stability  

 The stability of a system can be determined from Bode plots (please recall, we have already 

discussed Bode plots) by implementing the Nyquist stability criterion using two plots (log-

magnitude versus frequency plot, phase versus frequency plot). From Bode log-magnitude 

plot, determine the value of gain that ensures that the magnitude is less than 0 dB (unity 

gain) at that frequency where the phase is ±180°.  

 Thus, the Nyquist criterion using Bode plots tells us how to determine if a system is stable. 

The stability of a system in frequency response methods can be stated as follows:  

An open-loop stable system is stable in closed-loop if the open-loop magnitude frequency 

response has a gain of less than 0 dB at the frequency where the phase frequency response 

is ±180° (that is, at phase cross-over frequency).  



• Evaluating Gain and Phase Margins  

 Gain margin is the amount that the gain of a system can be increased before instability 

occurs if the phase angle is constant at 180°.  

 The gain margin is found by using the phase plot to find the frequency, GM ( phase crossover 

frequency), where the phase angle is ±180°. At this frequency, we look at the magnitude 

plot to determine the gain margin, GM, which is the gain required to raise the magnitude 

curve to 0 dB.  

  

  
  

Figure 1: Gain and phase margins on the Bode diagrams  

  

 Phase margin is the amount that the phase angle can be changed before instability occurs 

if the gain is held at unity.  

 The phase margin is found by using the magnitude curve to find the frequency, ���
(gain 

cross-over frequency), where the gain is 0 dB. On the phase curve at that frequency, the  

phase margin,��  , is the difference between the phase value and 180°.  

• Relation between Damping ratio and Closed-Loop Frequency response  

Recall the magnitude of resonant peak (Mp) and bandwidth (���) of a second-order system is 

directly related to the damping ratio (ξ), and hence, the percentage overshoot. And we know that 

the percentage overshoot is given by  

%�� = �
���� �����⁄ �

× 100 

 



From the above equation, the damping ratio can be obtained as  

    � =
����%�� ���⁄ �

��������%�� ���⁄ �
 (Equation (1)) 

 
 Resonant peak is the maximum value of magnitude M and is given by, 

�� =
1

2�(1 − ��)
 

 And the frequency at which the resonant peak occurs is resonant frequency,Wp and 

is given �� = ���1 − 2�� 

 

  
Figure 2: Log-magnitude plot of second-order system  

  

• Relation between Transient response speed and Closed-Loop Frequency response  

Another relationship between the frequency response and time response is between the 

speed of the time response (as measured by settling time (Ts), peak time (Tp), and rise time (Tr)) 

and the bandwidth of the closed-loop frequency response, which is defined here as the frequency, 

���, at which the magnitude response curve is 3 dB down from its value at zero frequency (see 

Figure 2).  

Recall the equation, � �� = ��� (1 − 2��)+ �4�� − 4�� + 2            (Equation (2))  

 

To relate ��� to settling time, we substitute,�� = 4 ���⁄  into Equation (2) and obtain 

 

��� =
�

���
� (1 − 2��)+ �4�� + 4�� + 2                                          (Equation (3)) 

 

 

           

 

  



 

Similarly, to relate ��� to peak time, we substitute �� = � �����1 − ��⁄    into Equation (2) and obtain  

  
 

��� =
�

�������
� (1 − 2��)+ �4�� + 4�� + 2                (Equation (4)) 

 

• Damping ratio from Phase margin  

The relationship between the phase margin and the damping ratio is given by (without derivation)  

  

                                          �� = ����� �
��

������������
�                        (Equation (5))  

  
This relationship will enable us to evaluate the percentage overshoot from the phase margin found 

from the open-loop frequency response.  

• Transient response design via cascade compensation  

 Recall with root locus, we can identify a specific point as having a desired transient 

response characteristic. We can then design cascade compensation to operate at that point 

and meet the transient response specifications.   

 And from Equation (5) we seen that phase margin is related to percentage overshoot and 

from Equations (3) and (4) bandwidth is related to both damping ratio and settling time or 

peak time.  

 When we design cascade compensation using frequency response methods to improve the 

transient response, we have to reshape the open-loop transfer function’s frequency 

response to meet both the phase-margin requirement (percentage overshoot) and the 

bandwidth requirement (settling time or peak time).   

• The following summary are the important points to be remember on compensator design via 

frequency response methods:  

(1) An open-loop stable system is stable in closed-loop if the open-loop magnitude frequency 

response has a gain of less than 0 dB at the frequency where the phase frequency response is 

±180°.  

(2) Percentage overshoot is reduced by increasing the phase margin, and the speed of the response 

is increased by increasing the bandwidth.  

(3) Steady-state error is improved by increasing the low-frequency magnitude responses.  

  



4.2 Transient Response via Gain Adjustment  

Let us start with the design via frequency response methods by discussing the link between phase 

margin, transient response, and gain. In Equation (5), the relationship between damping ratio   

(equivalently percentage overshoot) and phase margin was shown for �(�)=
� �
�

������ ��
     .Thus, if we  

can vary the phase margin, we can vary the percentage overshoot. Looking at Figure 3, we see that if we 

desire a phase margin,�� represented by CD, we would have to raise the magnitude curve by AB.  

Thus, a simple gain adjustment can be used to design phase margin and, hence, percentage overshoot.  

  

 
Figure 3: Bode plots showing gain adjustment for a desired phase margin 

  

The following steps summarize the design procedure by which we can determine the gain to meet a 

percentage overshoot requirement using the open-loop frequency response and assuming dominant 

second-order closed-loop poles:  

1. Draw the Bode magnitude and phase plots for a convenient value of gain.  

2. Using Equations (1) and (5), determine the required phase margin from the percentage 

overshoot.  

3. Find the frequency,���
 on the Bode phase diagram that yields the desired phase margin, CD, as 

shown on Figure 3.  

4. Change the gain by an amount AB to force the magnitude curve to go through 0 dB at ���  . The 

amount of gain adjustment is the additional gain needed to produce the required phase margin.  

  



Example 4.1: Transient Response via Gain Adjustment  

Problem: For the position control system shown in Figure 4, find the value of preamplifier gain, K, to 

yield a 9.5% overshoot in the transient response for a step input using frequency response methods.  

  
Figure 4: System for Example 1  

  

Step 1: Choose K = 1 (you can select any arbitrary value) to start the magnitude plot for open-loop 

transfer function by using a command ‘bode’ in MATLAB and the plots are shown in Figure 5.  

  

  
Figure 5: Bode magnitude and phase plots for Example 1 for K = 1  

  

Step 2: Using Equation (1), a 9.5% overshoot implies � =  0.6 for the closed-loop dominant poles.  

Equation (5) yields a 59.2° phase margin for a damping ratio of 0.6.  

Step 3: Locate on the phase plot the frequency that yields a 59.2° phase margin. This frequency is found 
where the phase angle is the difference between 180° and 59.2°, or –120.8°. From the phase plot, the 
value of the phase-margin frequency is 14.76 rad/sec (you can zoom the phase plot obtained from  

MATLAB (Figure 5) for finding the frequency for the phase value –120.8°)  

  



Step 4: At a frequency of 14.76 rad/sec on the magnitude plot, the gain is found to be –55.3 dB (you can 

zoom the magnitude plot obtained from MATLAB (Figure 5) for finding the dB value for the frequency 

14.76 rad/sec). This magnitude has to be raised to 0 dB to yield the required phase margin.  

The value of K for 55.3 dB can be obtained as  

20������ = 55.3                  ⟹ ������ = 2.765 

⟹ � = 10�.��� = 582.1 

Since the log-magnitude plot was drawn for K = 1, a 55.3 dB increase, or K = 1 × 582.1 = 582.1, would 

yield the required phase margin for 9.5% overshoot.  

Therefore, the gain-adjusted open-loop transfer function is  

�(�)=
100× 582.1

�(�+ 36)(�+ 100)
=

58210

�(�+ 36)(�+ 100)
 

Now, the open-loop transfer function can be checked for the given specification in MATLAB.  

  

  
Figure 6: Step response of the system in Figure 4 for K = 582.1  

  

From Figure 6, it is clear that the percentage overshoot is 8.6% for K = 582.1 (desired is 9.5%, so 

overdesign) and the peak time is 0.181 secs.  

Solving the problem in Example 1 shown in Figure 4 using MATLAB SISOTOOL:  

1. Type the following steps in MATLAB command window to determine the damping ratio for  

9.5% overshoot:  

 

 



ov = 9.5 

damp =(-log(ov/100))/(sqrt(pi^2+log(ov/100)^2))  

2. Then, type the following step in MATLAB command window to determine the phase margin for 

the obtained damping ratio from the above step:  

Pm = atan(2*damp/(sqrt(-2*damp^2+sqrt(1+4*damp^4))))*(180/pi)  

Note:  

In MATLAB, ‘log(x)’ is the natural logarithm of x, and ‘atan’ is the inverse tangent and it returns the 

value in radians, therefore the value has to converted into degrees by multiplying with 180/pi.  

  

3. Then, type sisotool to open SISO Design GUI. The following two window (Window 1 (See 

Figure 7), Window 2 (See Figure 8)) appears:  

  
Figure 7: SISOTOOL window 1 - ‘Control and Estimation Tools Manager’  

  
Figure 8: SISOTOOL window 2 - ‘SISO Design for SISO Design Task’  



  

4. In the SISOTOOL window SISO Design for SISO Design Task, Select Design Plots 

Configuration… in the View menu. In that, Select Plot Type as Open-Loop Bode for Plot 1  

and Select Plot Type as None for Plots 2 and 3, and make sure that the Plot Type are None for 

all the plots except Plot 1.  

5. Then, go to Architecture tab in Control and Estimation Tools Manager window, and Click 

System Data… for import data for given open loop system. In that, the default value of 1 will be 

shown for G, H, C and F. Now, Double-click the Data for G to remove the value 1 and type the  

following syntax to load the system open-loop transfer function �(�)=
���

�������������
 

tf(100,[1 136 3600 0]) and Click OK in the System Data window.  

6. Now, the Bode magnitude and phase plots for the given system G will be appeared in SISO Design 

for SISO Design Task window. In that, Right-click either inside Magnitude plot or inside Phase 

plot, and Select Grid. Now, grid appears in bode plots along with gain margin (G.M.) and phase 

margin (P.M.) values as shown below:  

  

  
Figure 9: Bode Magnitude and Phase plots for the system, G(s) given in Figure 4  

  

7. Now, Grab the stability margin point in the magnitude diagram (indicated by orange circle) and 

raise the magnitude curve until the phase curve shows the phase margin calculated by the formula 

typed in MATLAB Command window and shown in the MATLAB Command  

Window as Pm (that is, 59.1621).  

8. After raising the magnitude curve for the phase margin value of 59.2 deg (shown in Phase plot), 

Right-click in the Bode plot area, Select Edit Compensator… and read the gain under 



Compensator in the resulting window. That gain value is the value of open-loop K for the given 

system. Here, the value shown for Compensator is C = 584 (Remember, the value is 582.1 with 

manual calculations)  

  
Therefore, the gain-adjusted open-loop transfer function is  

 

�(�)=
100× 584

�(�+ 36)(�+ 100)
=

58400

�� + 136�� + 3600�
 

4.3 Lag Compensator Design  

The following steps summarize the design procedure of lag compensator:  

1. Set the gain, K, to the value that satisfies the steady-state error specification and plot the Bode 

magnitude and phase diagrams for this value of gain.  

2. Find the frequency where the phase margin is 5° to 12° greater than the phase margin that yields 

the desired transient response (According to a textbook by Ogata (1990)). This step compensates 

for the fact that the phase of the lag compensator may still contribute anywhere from –5° to –12° 

of phase at the phase-margin frequency.  

3. Select a lag compensator whose magnitude response yields a composite Bode magnitude diagram 

that goes through 0 dB at the frequency found in Step 2 as follows:   

Draw the compensator’s high-frequency asymptote to yield 0 dB for the compensated system at 

the frequency found in Step 2. Thus, if the gain at the frequency found in Step 2 is 20 log KPM, 

then the compensator’s high-frequency asymptote will be set at –20 log KPM; select the upper break 

frequency to be 1 decade below the frequency found in Step 2; select the low-frequency asymptote 

to be at 0 dB; connect the compensator’s high- and low-frequency asymptotes with a –20 

dB/decade line to locate the lower break frequency.  

4. Reset the system gain, K, to compensate for any attenuation in the lag network in order to keep the 

static error constant the same as that found in Step 1.  

From these steps, you see that we are relying upon the initial gain setting to meet the steady-state 
requirements and then relying upon the lag compensator’s –20 dB/decade slope to meet the transient 
response requirement by setting the 0 dB crossing of the magnitude plot.  

  

Example 4.2: Lag Compensator Design  

Problem: Given the system of Figure 4, use Bode diagrams to design a lag compensator to yield a tenfold 

improvement in steady-state error over the gain-compensated system while keeping the percentage 

overshoot at 9.5%.  

  



Step 1: From Example 1 a gain, K, of 582.1 yields a 9.5% overshoot. Thus, for this system, Kv = 16.17. 

For a tenfold improvement in steady-state error, Kv must increase by a factor of 10, or Kv = 161.7. 

Therefore, the value of K in Figure 4 equals 5821, and the open-loop transfer function is  

�(�)=
582100

�(�+ 36)(�+ 100)
 

 

Remember,�(∞)=
�

����⟶���(�)
=

�

��
⟹ �� = ���

�⟶�
��(�) hence we can calculate for Kv if given G(s) 

 

The Bode plots for the open-loop transfer function for K = 5821 are shown in Figure 10.  

  

  
Figure 10: Bode magnitude and phase plots for Example 2 for K = 5821  

  

Step 2: The phase margin required for a 9.5% overshoot (� = 0.6) is found from Equation (5) to be  

59.2°. We increase this value of phase margin by 10° (according to Ogata, it is 5° to 12°) to 69.2° in order 

to compensate for the phase angle contribution of the lag compensator. Now find the frequency where the 

phase margin is 69.2°. This frequency occurs at a phase angle of –180° + 69.2° = –110.8° and is found to 

be 9.74 rad/s (from Phase plot of Figure 10). At this frequency, the magnitude plot must go through 0dB. 

The magnitude at 9.74 rad/s is now +24.05 dB≅+24 dB (from Magnitude plot of Figure 10). Thus, the lag 

compensator must provide –24 dB attenuation at 9.74 rad/s.   

  
Steps 3 and 4: We now design the compensator. First draw the high-frequency asymptote at –24 dB. 

Arbitrarily select the higher break frequency to be about one decade below the phase-margin frequency, 

or 0.974 rad/s. Starting at the intersection of this frequency with the lag compensator’s high-frequency 



asymptote, draw a –20 dB/decade line until 0 dB is reached. The compensator must have a dc gain of unity 

to retain the value of Kv that we have already designed by setting K = 5821. The lower break frequency is 

found to be 0.064 rad/s (See Figure 11).   

  

  
  

Figure 11: Manual procedure in Bode Magnitude plot for Steps 3 and 4  

  

Now, the value of higher break frequency is taken as compensator zero, that is = 0.974 and the low-

frequency value is the value of compensator pole and that is equal to 0.064. And in Step 2, we see that the 

compensator should provide –24 dB attenuation at 9.74 rad/s. Therefore, we have to find the gain value 

corresponds to –24 dB as follows:  

20����= −24     ⇒ ����= −1.2 ⇒ � = 10��.� = 0.063 

 

 

 

 



Hence, the lag compensator’s transfer function is ��(�)=
�.���(���.���)

(���.���)
 

 Finally, the compensated system’s forward transfer function is�(�)��(�)=
�����.�(���.���)

�(����)(�����)(���.���)
.  

The performance comparison of gain-compensated system and lag-compensated system are given in the 
below table (obtained from simulation results):  

        Parameter        Gain-compensated system       Lag-compensated system  

   Percentage overshoot       8.6%                9.1%  

   Steady-state error      0.0618                            0.0065  

  

Exercise 4.1  (for Practice) 

Please try the following problem in MATLAB SISOTOOL: 

For a unity feedback system with a forward transfer function �(�)=
�

�(����)(�����)
 use frequency 

response techniques to find the value of gain, K, to yield a closed-loop step response with 20% 
overshoot. 

ANSWER: K = 194200. 

Exercise 4.2 (for practice):   

Please try the following problem and verify using MATLAB:  

 

For a unity feedback system with a forward transfer function �(�)=
�

�(�����)
 use Bode   

diagrams to design a lag compensator to yield a tenfold improvement in steady-state error over the gain 

compensated system while keeping the percentage overshoot at 20% (Given in Exercise 4.1).  

ANSWERS:   

Gain-compensated system to yield a tenfold improvement in steady-state error while maintaining 20%  

overshoot:   

�(�)=
������

�(����)(�����)
  

 
Lag-compensator to yield a tenfold improvement in steady-state error over the gain-compensated  

system: ��(�)=
�.�����(���.���)

(���.��)
  

Steady-state error (for unit ramp input) for the gain-compensated system = 0.0309;  
Steady-state error for the lag-compensated system = 0.0031.  

    

Reference textbook  

Norman S. Nise, ‘Control Systems Engineering’, Sixth Edition, John Wiley and Sons, 2011.  

  


