
LECTURE 2: PD, PID, and Feedback Compensation. 

2.1 Ideal Derivative Compensation (PD) 

Generally, we want to speed up the transient response (decrease Ts and Tp). If we are lucky then 

a system’s desired transient response lies on its Root Locus (RL). However, if no point on the 

RL corresponds to the desired transient response then we must compensate the system. A 

derivative compensator modifies the RL to go through the desired point. 

A derivative compensator adds a zero to the forward path. 

��(�) = � + �� 

Notice that this transfer function is the sum of a differentiator and a pure gain. Thus, we refer to 

its use as PD control (proportional + derivative). 

We consider various settings for Zc when compensating the system with the following RL: 

 

 

 

 

 



Zc = -4 

 

Zc = -3 

 



Zc = -2 

 

As the zero is moved, we get changes in Ts and Tp. In this case, when the zero is moved to -2 we 

get the fastest response. All the while, we are maintaining %OS. 

 



We show how to best place the zero by example... 

E.g. Design an ideal derivative compensator for the following system. The ideal transient 

response has 16% overshoot and a threefold reduction in Ts. 

 

The RL for the uncompensated system: 
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1.205
= 3.320 

 



The angle made with the positive real-axis must be the same as before (120.260) to maintain 16% 

overshoot. Therefore, we can determine the imaginary part by trigonometry. 

tan (180� − 120.26� =
��

3.613
 

�� = 3.613 tan(180� − 120.26�) = 6.193 

 

We must now solve for the zero that will place the desired point on the new RL. At the desired 

point, the sum of angles from the open-loop poles is -275.60. To achieve a point on the RL we 

require a zero positioned so that the sum of angles equals an odd multiple of 1800 

−275.6� + ���
= −180� 

���
= 95.6� 

What is the coordinate of a zero that makes an angle of 95:60 with the desired complex pole at -

3:613 + j6:193? 



 

tan(180� − 95.6�) =
6.193

3.613 − �
 

�� = 3.006 

The RL for the compensated system is as follows: 

 



Notice that the 2nd-order approximation is not as good for the compensated system. We can 

determine from simulation that the following quantities differ from their ideal values: 

 Ideal Simulated 

%OS 16 11.8 

TS 1.107 1.2 

TP 0.507 0.5 

 

 

A PD controller can be implemented in a similar manner to the PI controller by placing the 

proportional and derivative compensators in parallel: 

 

The overall compensator transfer function is as follows: 
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2.2 Lead Compensation 

An ideal derivative compensator has two main disadvantages: 

 Differentiation tends to enhance high-frequency noise. 

 Implementing a differentiator requires an active circuit. 

A lead compensator is, roughly speaking, an approximation to an ideal derivative compensator 

that can be implemented with a passive circuit. Its transfer function is as follows: 
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The RL design technique for lead compensators is rather ambiguous; therefore we will not cover 

it. The frequency response technique (covered later) is more definitive. 

2.3 PID Controller Design 

A PID controller utilizes PI and PD control together to address both steady-state error and 

transient response. There are two ways to proceed: 

 Design for transient response, then design for steady-state error. 

Con: May slightly decrease response speed when designing for steady-state error. 

 Design for steady-state error, then design for transient response 

Con: May increase (or possibly decrease) steady state error when designing for transient 

response. 

 

We choose to design for transient response first. 



 

The transfer function for a PID controller is as follows: 
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Notice that this function has two zeros and one pole. The location of one zero will come from the 

transient response design; the other zero will come from the steady-state error design. 

E.g. Design a PID controller for the following system which reduces Tp by two thirds, has 20% 

overshoot, and zero steady-state error for a step input. 

 

First, consider the RL for the uncompensated system at 20%overshoot... 

We search to find the current operating point with 20% overshoot: 



 

At this point, �� =
�
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�� = 15.87 

We can then determine the real part of the complex pole by trigonometry: 

tan(180� − 117.13�) =
15.87
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tan (180� − 117.13�)
= 8.13 

 

We must now determine the location of the PD compensator’s zero such that this pole lies on the 

new RL. The current angular sum at -8.13 + j15.87 is -198.370. Therefore, the angle that the 

zero makes with the real-axis should be 18.370 
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Thus, the location of this zero is at 55.92. The transfer function for the PD-compensated system 

is, 

���(�) = � + 55.92 

This is the RL for the PD-compensated system. Searching along the zeta = 0:456 line we find the 

gain is 5.34. 

 

We now compensate this system for steady-state error by adding a 

pole at the origin and a nearby zero: 
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The following is the RL for the PID-compensated system: 



 

We must search again along the zeta = 0:456 line to find that the gain at the desired operating 

point is 4.6. 

We should now determine the appropriate constants of the PID compensator. The compensator 

will subsume the gain K that is 4.6. We added a zero at -55.92 for the PD component, and a pole 

at the origin and a zero at -0.5 for the PI component: 
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Recall the general form: 
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Hence K3 = 4.6, K1 = 259.5, and K2 = 128.6 

The system’s step response shows both the improvement in speed and in reduction of steady-

state error: 



 

Since the second-order approximation is no longer valid, it is important to simulate the response 

to verify that requirements are met. In this case, the desired reduction in Tp of 2/3 was not 

achieved (uncompensated: 0.297, PID-compensated 0.214). If this is deemed significant, we 

could re-design the PD component, for a greater than 2/3 reduction in Tp. Alternately, we could 

move the PI component’s zero further from the origin to yield a faster response. 

2.4 Feedback Compensation 

We have focused on the addition of compensators in the forward path. It is also possible to add 

compensators in the feedback path: 

 

Feedback compensators can yield faster responses than cascade compensators. They also tend to 

require less amplification since the compensator’s input comes from the high-power output of 

the system, rather than from the low-lower actuating signal. Reduced amplification is preferred 

in noisy systems where we want to avoid amplifying the noise. 



Design techniques for feedback compensators are related to the design techniques for cascade 

compensators. 

2.5 .Physical Realization of Compensation 

Utilizing op-amps, we can implement all of the compensators studied. Recall the circuit for an 

inverting amplifier: 

 

The transfer function for this circuit is: 
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We can achieve a great variety of transfer functions by inserting different components for these 

impedances. 

We can implement lag and lead compensators with both op-amps and with passive circuits. 

E.g., recall the transfer function for our example PID compensator. 

��(�) =
��(�� +

��
��

� +
��
��

)

�
 

= ��� +
��

��
+

��

��

1

�
 

= 4.6� + 56.42 + 27.96
1

�
 



We can relate this to the transfer function for a PID controller on, 
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We can establish three equations in four unknowns (R1, R2, C1, and C2). Choosing an arbitrary 

value for one component, we can then solve for the other three. 


