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Design via Root Locus

9

Chapter Learning Outcomes

After completing this chapter the student will be able to:

� Use the root locus to design cascade compensators to improve the steady-state error
(Sections 9.1–9.2)

� Use the root locus to design cascade compensators to improve the transient
response (Section 9.3)

� Use the root locus to design cascade compensators to improve both the steady-state
error and the transient response (Section 9.4)

� Use the root locus to design feedback compensators to improve the transient
response (Section 9.5)

� Realize the designed compensators physically (Section 9.6)

Case Study Learning Outcomes

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

� Given the antenna azimuth position control system shown on the front endpapers,
you will be able to design a cascade compensator to meet transient response and
steady-state error specifications.

� Given the pitch or heading control system for the UFSS vehicle shown on the back
endpapers, you will be able to design a cascade or feedback compensator to meet
transient response specifications.
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9.1 Introduction

In Chapter 8, we saw that the root locus graphically displayed both transient response
and stability information. The locus can be sketched quickly to get a general idea of the
changes in transient response generated by changes in gain. Specific points on the
locus also can be found accurately to give quantitative design information.

The root locus typically allows us to choose the proper loop gain to meet a
transient response specification. As the gain is varied, we move through different
regions of response. Setting the gain at a particular value yields the transient
response dictated by the poles at that point on the root locus. Thus, we are limited
to those responses that exist along the root locus.

Improving Transient Response
Flexibility in the design of a desired transient response can be increased if we can
design for transient responses that are not on the root locus. Figure 9.1(a) illustrates
the concept. Assume that the desired transient response, defined by percent over-
shoot and settling time, is represented by point B. Unfortunately, on the current root
locus at the specified percent overshoot, we only can obtain the settling time
represented by point A after a simple gain adjustment. Thus, our goal is to speed
up the response at A to that of B, without affecting the percent overshoot. This
increase in speed cannot be accomplished by a simple gain adjustment, since point B
does not lie on the root locus. Figure 9.1(b) illustrates the improvement in the
transient response we seek: The faster response has the same percent overshoot as
the slower response.

FIGURE 9.1 a. Sample root
locus, showing possible design
point via gain adjustment (A)
and desired design point that
cannot be met via simple gain
adjustment (B); b. responses
from poles at A and B
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One way to solve our problem is to replace the existing system with a system
whose root locus intersects the desired design point, B. Unfortunately, this replace-
ment is expensive and counterproductive. Most systems are chosen for character-
istics other than transient response. For example, an elevator cage and motor are
chosen for speed and power. Components chosen for their transient response may
not necessarily meet, for example, power requirements.

Rather than change the existing system, we augment, or compensate, the
system with additional poles and zeros, so that the compensated system has a root
locus that goes through the desired pole location for some value of gain. One of the
advantages of compensating a system in this way is that additional poles and zeros
can be added at the low-power end of the system before the plant. Addition of
compensating poles and zeros need not interfere with the power output require-
ments of the system or present additional load or design problems. The compensat-
ing poles and zeros can be generated with a passive or an active network.

A possible disadvantage of compensating a system with additional open-loop
poles and zeros is that the system order can increase, with a subsequent effect on the
desired response. In Chapters 4 and 8, we discussed the effect of additional closed-
loop poles and zeros on the transient response. At the beginning of the design
process discussed in this chapter, we determine the proper location of additional
open-loop poles and zeros to yield the desired second-order closed-loop poles.
However, we do not know the location of the higher-order closed-loop poles until the
end of the design. Thus, we should evaluate the transient response through simula-
tion after the design is complete to be sure the requirements have been met.

In Chapter 12, when we discuss state-space design, the disadvantage of finding
the location of higher-order closed-loop poles after the design will be eliminated by
techniques that allow the designer to specify and design the location of all the closed-
loop poles at the beginning of the design process.

One method of compensating for transient response that will be discussed later
is to insert a differentiator in the forward path in parallel with the gain. We can
visualize the operation of the differentiator with the following example. Assuming a
position control with a step input, we note that the error undergoes an initial large
change. Differentiating this rapid change yields a large signal that drives the plant.
The output from the differentiator is much larger than the output from the pure gain.
This large, initial input to the plant produces a faster response. As the error
approaches its final value, its derivative approaches zero, and the output from
the differentiator becomes negligible compared to the output from the gain.

Improving Steady-State Error
Compensators are not only used to improve the transient response of a system; they
are also used independently to improve the steady-state error characteristics.
Previously, when the system gain was adjusted to meet the transient response
specification, steady-state error performance deteriorated, since both the transient
response and the static error constant were related to the gain. The higher the gain,
the smaller the steady-state error, but the larger the percent overshoot. On the other
hand, reducing gain to reduce overshoot increased the steady-state error. If we use
dynamic compensators, compensating networks can be designed that will allow us to
meet transient and steady-state error specifications simultaneously.1 We no longer

1 The word dynamic describes compensators with noninstantaneous transient response. The transfer
functions of such compensators are functions of the Laplace variable, s, rather than pure gain.
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need to compromise between transient response and steady-state error, as long as
the system operates in its linear range.

In Chapter 7, we learned that steady-state error can be improved by adding an
open-loop pole at the origin in the forward path, thus increasing the system type and
driving the associated steady-state error to zero. This additional pole at the origin
requires an integrator for its realization.

In summary, then, transient response is improved with the addition of differ-
entiation, and steady-state error is improved with the addition of integration in the
forward path.

Configurations
Two configurations of compensation are covered in this chapter: cascade compen-
sation and feedback compensation. These methods are modeled in Figure 9.2. With
cascade compensation, the compensating network, G1(s), is placed at the low-power
end of the forward path in cascade with the plant. If feedback compensation is used,
the compensator, H1(s), is placed in the feedback path. Both methods change the
open-loop poles and zeros, thereby creating a new root locus that goes through the
desired closed-loop pole location.

Compensators
Compensators that use pure integration for improving steady-state error or pure
differentiation for improving transient response are defined as ideal compensators.
Ideal compensators must be implemented with active networks, which, in the case of
electric networks, require the use of active amplifiers and possible additional power
sources. An advantage of ideal integral compensators is that steady-state error is
reduced to zero. Electromechanical ideal compensators, such as tachometers, are
often used to improve transient response, since they can be conveniently interfaced
with the plant.

Other design techniques that preclude the use of active devices for compen-
sation can be adopted. These compensators, which can be implemented with passive
elements such as resistors and capacitors, do not use pure integration and differen-
tiation and are not ideal compensators. Advantages of passive networks are that they

FIGURE 9.2 Compensation
techniques: a. cascade;
b. feedback
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are less expensive and do not require additional power sources for their operation.
Their disadvantage is that the steady-state error is not driven to zero in cases where
ideal compensators yield zero error.

Thus, the choice between an active or a passive compensator revolves around
cost, weight, desired performance, transfer function, and the interface between the
compensator and other hardware. In Sections 9.2, 9.3, and 9.4, we first discuss
cascade compensator design using ideal compensation and follow with cascade
compensation using compensators that are not implemented with pure integration
and differentiation.

9.2 Improving Steady-State Error
via Cascade Compensation

In this section, we discuss two ways to improve the steady-state error of a feedback
control system using cascade compensation. One objective of this design is to
improve the steady-state error without appreciably affecting the transient response.

The first technique is ideal integral compensation, which uses a pure integrator
to place an open-loop, forward-path pole at the origin, thus increasing the system
type and reducing the error to zero. The second technique does not use pure
integration. This compensation technique places the pole near the origin, and
although it does not drive the steady-state error to zero, it does yield a measurable
reduction in steady-state error.

While the first technique reduces the steady-state error to zero, the compen-
sator must be implemented with active networks, such as amplifiers. The second
technique, although it does not reduce the error to zero, does have the advantage
that it can be implemented with a less expensive passive network that does not
require additional power sources.

The names associated with the compensators come either from the method of
implementing the compensator or from the compensator’s characteristics. Systems
that feed the error forward to the plant are called proportional control systems.
Systems that feed the integral of the error to the plant are called integral control
systems. Finally, systems that feed the derivative of the error to the plant are called
derivative control systems. Thus, in this section we call the ideal integral compensator
a proportional-plus-integral (PI) controller, since the implementation, as we will see,
consists of feeding the error (proportional) plus the integral of the error forward to
the plant. The second technique uses what we call a lag compensator. The name of
this compensator comes from its frequency response characteristics, which will be
discussed in Chapter 11. Thus, we use the name PI controller interchangeably with
ideal integral compensator, and we use the name lag compensator when the cascade
compensator does not employ pure integration.

Ideal Integral Compensation (PI)
Steady-state error can be improved by placing an open-loop pole at the origin,
because this increases the system type by one. For example, a Type 0 system
responding to a step input with a finite error responds with zero error if the system
type is increased by one. Active circuits can be used to place poles at the origin. Later
in this chapter, we show how to build an integrator with active electronic circuits.

To see how to improve the steady-state error without affecting the transient
response, look at Figure 9.3(a). Here we have a system operating with a desirable
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transient response generated by the closed-loop poles at A. If we add a pole at the
origin to increase the system type, the angular contribution of the open-loop poles at
point A is no longer 180�, and the root locus no longer goes through point A, as
shown in Figure 9.3(b).

To solve the problem, we also add a zero close to the pole at the origin, as shown
in Figure 9.3(c). Now the angular contribution of the compensator zero and compen-
sator pole cancel out, point A is still on the root locus, and the system type has been
increased. Furthermore, the required gain at the dominant pole is about the same as
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FIGURE 9.3 Pole atA is a. on the root locus without compensator; b. not on the root locus with
compensator pole added; c. approximately on the root locus with compensator pole and zero
added
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before compensation, since the ratio of lengths from the compensator pole and the
compensator zero is approximately unity. Thus, we have improved the steady-state
error without appreciably affecting the transient response. A compensator with a pole
at the origin and a zero close to the pole is called an ideal integral compensator.

In the example that follows, we demonstrate the effect of ideal integral compen-
sation. An open-loop pole will be placed at the origin to increase the system type and
drive the steady-state error to zero. An open-loop zero will be placed very close to the
open-loop pole at the origin so that the original closed-loop poles on the original root
locus still remain at approximately the same points on the compensated root locus.

Example 9.1

Effect of an Ideal Integral Compensator

PROBLEM: Given the system of Figure 9.4(a), operating with a damping ratio of
0.174, show that the addition of the ideal integral compensator shown in Figure 9.4(b)
reduces the steady-state error to zero for a step input without appreciably affecting
transient response. The compensating network is chosen with a pole at the origin
to increase the system type and a zero at �0:1, close to the compensator pole, so that
the angular contribution of the compensator evaluated at the original, dominant,
second-order poles is approximately zero. Thus, the original, dominant, second-order
closed-loop poles are still approximately on the new root locus.

SOLUTION: We first analyze the uncompensated system and determine the loca-
tion of the dominant, second-order poles. Next we evaluate the uncompensated
steady-state error for a unit step input. The root locus for the uncompensated
system is shown in Figure 9.5.

A damping ratio of 0.174 is represented by a radial line drawn on the s-plane at
100:02�. Searching along this line with the root locus program discussed in Appendix
H at www.wiley.com/college/nise, we find that the dominant poles are 0:694 � j3:926
for a gain, K, of 164.6. Now look for the third pole on the root locus beyond �10 on
the real axis. Using the root locus program and searching for the same gain as that of
the dominant pair,K ¼ 164:6, we find that the third pole is approximately at�11:61.
This gain yields Kp ¼ 8:23. Hence, the steady-state error is

eð1Þ ¼ 1

1 þKp
¼ 1

1 þ 8:23
¼ 0:108 ð9:1Þ
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(b)
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FIGURE 9.4 Closed-loop
system for Example 9.1:
a. before compensation;
b. after ideal integral
compensation
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Adding an ideal integral compensator with a zero at �0:1, as shown in Figure
9.4(b), we obtain the root locus shown in Figure 9.6. The dominant second-order
poles, the third pole beyond �10, and the gain are approximately the same as for
the uncompensated system. Another section of the compensated root locus is
between the origin and �0:1. Searching this region for the same gain at the
dominant pair, K ¼ 158:2, the fourth closed-loop pole is found at �0:0902, close
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enough to the zero to cause pole-zero cancellation. Thus, the compensated
system’s closed-loop poles and gain are approximately the same as the un-
compensated system’s closed-loop poles and gain, which indicates that the
transient response of the compensated system is about the same as the un-
compensated system. However, the compensated system, with its pole at the
origin, is a Type 1 system; unlike the uncompensated system, it will respond to a
step input with zero error.

Figure 9.7 compares the uncompensated response with the ideal integral
compensated response. The step response of the ideal integral compensated system
approaches unity in the steady state, while the uncompensated system approaches
0.892. Thus, the ideal integral compensated system responds with zero steady-state
error. The transient response of both the uncompensated and the ideal integral
compensated systems is the same up to approximately 3 seconds. After that time the
integrator in the compensator, shown in Figure 9.4(b), slowly compensates for the
error until zero error is finally reached. The simulation shows that it takes 18 seconds
for the compensated system to reach to within �2% of the final value of unity, while
the uncompensated system takes about 6 seconds to settle to within �2% of its final
value of 0.892. The compensation at first may appear to yield deterioration in the
settling time. However, notice that the compensated system reaches the un-
compensated system’s final value in about the same time. The remaining time is
used to improve the steady-state error over that of the uncompensated system.

A method of implementing an ideal integral compensator is shown in Figure 9.8.
The compensating network precedes G(s) and is an ideal integral compensator since

GcðsÞ ¼ K1 þK2

s
¼

K1 sþ K2
K1

� �

s
ð9:2Þ
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FIGURE 9.7 Ideal integral
compensated system response
and the uncompensated system
response of Example 9.1
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FIGURE 9.8 PI controller
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The value of the zero can be adjusted by varying K2=K1. In this implementation, the
error and the integral of the error are fed forward to the plant, G(s). Since Figure 9.8
has both proportional and integral control, the ideal integral controller, or compen-
sator, is given the alternate namePI controller. Later in the chapter we will see how to
implement each block, K1 and K2=s.

Lag Compensation
Ideal integral compensation, with its pole on the origin, requires an active integrator.
If we use passive networks, the pole and zero are moved to the left, close to the
origin, as shown in Figure 9.9(c). One may guess that this placement of the pole,
although it does not increase the system type, does yield an improvement in the static
error constant over an uncompensated system. Without loss of generality, we
demonstrate that this improvement is indeed realized for a Type 1 system.

Assume the uncompensated system shown in Figure 9.9(a). The static error
constant, KvO , for the system is

KvO ¼ K z1 z2 � � �
p1p2 � � �

ð9:3Þ

Assuming the lag compensator shown in Figure 9.9(b) and (c), the new static error
constant is

KvN ¼ ðK z1 z2 � � �ÞðzcÞ
ðp1p2 � � �ÞðpcÞ

ð9:4Þ

What is the effect on the transient response? Figure 9.10 shows the effect on the
root locus of adding the lag compensator. The uncompensated system’s root locus is
shown in Figure 9.10(a), where point P is assumed to be the dominant pole. If the lag
compensator pole and zero are close together, the angular contribution of the
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FIGURE 9.9 a. Type 1 uncompensated system; b. Type 1 compensated system; c. compensator
pole-zero plot
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compensator to pointP is approximately zero degrees. Thus, in Figure 9.10(b), where
the compensator has been added, point P is still at approximately the same location
on the compensated root locus.

What is the effect on the required gain, K? After inserting the compensator, we
find that K is virtually the same for the uncompensated and compensated systems,
since the lengths of the vectors drawn from the lag compensator are approximately
equal and all other vectors have not changed appreciably.

Now, what improvement can we expect in the steady-state error? Since we
established that the gain, K, is about the same for the uncompensated and compen-
sated systems, we can substitute Eq. (9.3) into (9.4) and obtain

KvN ¼ KvO

zc
pc

> KvO ð9:5Þ

Equation (9.5) shows that the improvement in the compensated system’s Kv

over the uncompensated system’s Kv is equal to the ratio of the magnitude of the
compensator zero to the compensator pole. In order to keep the transient response
unchanged, we know the compensator pole and zero must be close to each other.
The only way the ratio of zc to pc can be large in order to yield an appreciable
improvement in steady-state error and simultaneously have the compensator’s
pole and zero close to each other to minimize the angular contribution is to place
the compensator’s pole-zero pair close to the origin. For example, the ratio of zc to
pc can be equal to 10 if the pole is at �0:001 and the zero is at �0:01. Thus, the ratio
is 10, yet the pole and zero are very close, and the angular contribution of the
compensator is small.

In conclusion, although the ideal compensator drives the steady-state error
to zero, a lag compensator with a pole that is not at the origin will improve the
static error constant by a factor equal to zc=pc. There also will be a minimal effect
upon the transient response if the pole-zero pair of the compensator is placed
close to the origin. Later in the chapter we show circuit configurations for the lag
compensator. These circuit configurations can be obtained with passive networks
and thus do not require the active amplifiers and possible additional power
supplies that are required by the ideal integral (PI) compensator. In the following
example we design a lag compensator to yield a specified improvement in steady-
state error.

s-plane

ωj

σ σ

(a) (b)

P
s-plane

ωj

P

–zc –pc

FIGURE 9.10 Root locus: a. before lag compensation; b. after lag compensation
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Example 9.2

Lag Compensator Design

PROBLEM: Compensate the system of Figure 9.4(a), whose root locus is shown in
Figure 9.5, to improve the steady-state error by a factor of 10 if the system is
operating with a damping ratio of 0.174.

SOLUTION: The uncompensated system error from Example 9.1 was 0.108 with
Kp ¼ 8:23. A tenfold improvement means a steady-state error of

eð1Þ ¼ 0:108

10
¼ 0:0108 ð9:6Þ

Since

eð1Þ ¼ 1

1 þKp
¼ 0:0108 ð9:7Þ

rearranging and solving for the required Kp yields

Kp ¼ 1 � eð1Þ
eð1Þ ¼ 1 � 0:0108

0:0108
¼ 91:59 ð9:8Þ

The improvement in Kp from the uncompensated system to the compensated
system is the required ratio of the compensator zero to the compensator pole, or

zc
pc

¼ KpN

KpO

¼ 91:59

8:23
¼ 11:13 ð9:9Þ

Arbitrarily selecting
pc ¼ 0:01 ð9:10Þ

we use Eq. (9.9) and find

zc ¼ 11:13pc � 0:111 ð9:11Þ
Let us now compare the compensated system, shown in Figure 9.11, with the

uncompensated system. First sketch the root locus of the compensated system, as
shown in Figure 9.12. Next search along the z ¼ 0:174 line for a multiple of 180� and
find that the second-order dominant poles are at �0:678 � j3:836 with a gain, K, of
158.1. The third and fourth closed-loop poles are at �11:55 and �0:101, respec-
tively, and are found by searching the real axis for a gain equal to that of the
dominant poles. All transient and steady-state results for both the uncompensated
and the compensated systems are shown in Table 9.1.

The fourth pole of the compensated system cancels its zero. This leaves the
remaining three closed-loop poles of the compensated system very close in value to
the three closed-loop poles of the uncompensated system. Hence, the transient

FIGURE 9.11 Compensated
system for Example 9.2
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response of both systems is approximately the same, as is the system gain, but notice
that the steady-state error of the compensated system is 1/9.818 that of the un-
compensated system and is close to the design specification of a tenfold improvement.

Figure 9.13 shows the effect of the lag compensator in the time domain. Even
though the transient responses of the uncompensated and lag-compensated sys-
tems are the same, the lag-compensated system exhibits less steady-state error by
approaching unity more closely than the uncompensated system.

We now examine another design possibility for the lag compensator and
compare the response to Figure 9.13. Let us assume a lag compensator whose pole
and zero are 10 times as close to the origin as in the previous design. The results are
compared in Figure 9.14. Even though both responses will eventually reach
approximately the same steady-state value, the lag compensator previously de-
signed, GcðsÞ ¼ ðsþ 0:111Þ=ðsþ 0:01Þ, approaches the final value faster than the
proposed lag compensator, GcðsÞ ¼ ðsþ 0:0111Þ=ðsþ 0:001Þ. We can explain this
phenomenon as follows. From Table 9.1, the previously designed lag compensator
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TABLE 9.1 Predicted characteristics of uncompensated and lag-compensated systems for
Example 9.2

Parameter Uncompensated Lag-compensated

Plant and compensator
K

ðsþ 1Þðsþ 2Þðsþ 10Þ
Kðsþ 0:111Þ

ðsþ 1Þðsþ 2Þðsþ 10Þðsþ 0:01Þ
K 164.6 158.1

Kp 8.23 87.75

eð1Þ 0.108 0.011

Dominant second-order poles �0:694 � j3:926 �0:678 � j3:836

Third pole �11:61 �11:55

Fourth pole None �0:101

Zero None �0:111

TryIt 9.1

Use the following MATLAB
and Control System Toolbox
statements to reproduce
Figure 9.13.

Gu=zpk([],...
[-1 -2 -10],164.6);
Gc=zpk([-0.111],...
[-0.01],1);
Gce=Gu*Gc;
Tu=feedback(Gu,1);
Tc=feedback(Gce,1);
step(Tu)
hold
step(Tc)

9.2 Improving Steady-State Error via Cascade Compensation 467



Apago PDF Enhancer

E1C09 11/03/2010 13:29:38 Page 468

has a fourth closed-loop pole at �0:101. Using the same analysis for the new lag
compensator with its open-loop pole 10 times as close to the imaginary axis, we
find its fourth closed-loop pole at �0:01. Thus, the new lag compensator has a
closed-loop pole closer to the imaginary axis than the original lag compensator.
This pole at �0:01 will produce a longer transient response than the original pole
at �0:101, and the steady-state value will not be reached as quickly.

Skill-Assessment Exercise 9.1

PROBLEM: A unity feedback system with the forward transfer function

GðsÞ ¼ K

sðsþ 7Þ
is operating with a closed-loop step response that has 15% overshoot. Do the
following:

a. Evaluate the steady-state error for a unit ramp input.

b. Design a lag compensator to improve the steady-state error by a factor of 20.

FIGURE 9.13 Step responses
of uncompensated and
lag-compensated systems for
Example 9.2
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FIGURE 9.14 Step responses
of the system for Example 9.2
using different lag
compensators
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c. Evaluate the steady-state error for a unit ramp input to your compensated
system.

d. Evaluate how much improvement in steady-state error was realized.

ANSWERS:

a. erampð1Þ ¼ 0:1527

b. GlagðsÞ ¼ sþ 0:2

sþ 0:01

c. erampð1Þ ¼ 0:0078

d. 19.58 times improvement

The complete solution is at www.wiley.com/college/nise.

9.3 Improving Transient Response
via Cascade Compensation

Since we have solved the problem of improving the steady-state error without
affecting the transient response, let us now improve the transient response itself. In
this section, we discuss two ways to improve the transient response of a feedback
control system by using cascade compensation. Typically, the objective is to design a
response that has a desirable percent overshoot and a shorter settling time than the
uncompensated system.

The first technique we will discuss is ideal derivative compensation. With ideal
derivative compensation, a pure differentiator is added to the forward path of the
feedback control system. We will see that the result of adding differentiation is the
addition of a zero to the forward-path transfer function. This type of compensation
requires an active network for its realization. Further, differentiation is a noisy
process; although the level of the noise is low, the frequency of the noise is high
compared to the signal. Thus, differentiating high-frequency noise yields a large,
unwanted signal.

The second technique does not use pure differentiation. Instead, it approx-
imates differentiation with a passive network by adding a zero and a more distant
pole to the forward-path transfer function. The zero approximates pure differentia-
tion as described previously.

As with compensation to improve steady-state error, we introduce names
associated with the implementation of the compensators. We call an ideal deriva-
tive compensator a proportional-plus-derivative (PD) controller, since the imple-
mentation, as we will see, consists of feeding the error (proportional) plus
the derivative of the error forward to the plant. The second technique uses a
passive network called a lead compensator. As with the lag compensator, the name
comes from its frequency response, which is discussed in Chapter 11. Thus, we use
the name PD controller interchangeably with ideal derivative compensator, and
we use the name lead compensator when the cascade compensator does not employ
pure differentiation.
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Ideal Derivative Compensation (PD)
The transient response of a system can be selected by choosing an appropriate
closed-loop pole location on the s-plane. If this point is on the root locus, then a
simple gain adjustment is all that is required in order to meet the transient response
specification. If the closed-loop pole location is not on the root locus, then the root
locus must be reshaped so that the compensated (new) root locus goes through the
selected closed-loop pole location. In order to accomplish the latter task, poles and
zeros can be added in the forward path to produce a new open-loop function whose
root locus goes through the design point on the s-plane. One way to speed up the
original system that generally works is to add a single zero to the forward path.

This zero can be represented by a compensator whose transfer function is

GcðsÞ ¼ sþ zc ð9:12Þ
This function, the sum of a differentiator and a pure gain, is called an ideal derivative,
or PD controller. Judicious choice of the position of the compensator zero can
quicken the response over the uncompensated system. In summary, transient
responses unattainable by a simple gain adjustment can be obtained by augmenting
the system’s poles and zeros with an ideal derivative compensator.

We now show that ideal derivative compensation speeds up the response of a
system. Several simple examples are shown in Figure 9.15, where the uncompensated
system of Figure 9.15(a), operating with a damping ratio of 0.4, becomes a compensated
system by the addition of a compensating zero at�2,�3, and�4 in Figures 9.15(b), (c),
and (d), respectively. In each design, the zero is moved to a different position, and the
root locus is shown. For each compensated case, the dominant, second-order poles are
farther out along the 0.4 damping ratio line than the uncompensated system.

Each of the compensated cases has dominant poles with the same damping
ratio as the uncompensated case. Thus, we predict that the percent overshoot will be
the same for each case.

Also, the compensated, dominant, closed-loop poles have more negative real
parts than the uncompensated, dominant, closed-loop poles. Hence, we predict that
the settling times for the compensated cases will be shorter than for the
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FIGURE 9.15 Using ideal derivative compensation: a. uncompensated; b. compensator zero at �2; (figure continues)

470 Chapter 9 Design via Root Locus



Apago PDF Enhancer

E1C09 11/03/2010 13:29:39 Page 471

uncompensated case. The compensated, dominant, closed-loop poles with the more
negative real parts will have the shorter settling times. The system in Figure 9.15(b)
will have the shortest settling time.

All of the compensated systems will have smaller peak times than the
uncompensated system, since the imaginary parts of the compensated systems
are larger. The system of Figure 9.15(b) will have the smallest peak time.

Also notice that as the zero is placed farther from the dominant poles,
the closed-loop, compensated dominant poles move closer to the origin and
to the uncompensated, dominant closed-loop poles. Table 9.2 summarizes the

K = 35.34

–2.437 + j5.583
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Third
pole
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FIGURE 9.15 (Continued ) c. compensator zero at �3; d. compensator zero at �4.

TABLE 9.2 Predicted characteristics for the systems of Figure 9.15

Uncompensated Compensation b Compensation c Compensation d

Plant and compensator
K

ðsþ 1Þðsþ 2Þðsþ 5Þ
Kðsþ 2Þ

ðsþ 1Þðsþ 2Þðsþ 5Þ
Kðsþ 3Þ

ðsþ 1Þðsþ 2Þðsþ 5Þ
Kðsþ 4Þ

ðsþ 1Þðsþ 2Þðsþ 5Þ
Dom, poles �0:939 � j2:151 �3 � j6:874 �2:437 � j5:583 �1:869 � j4:282

K 23.72 51.25 35.34 20.76

z 0.4 0.4 0.4 0.4

vn 2.347 7.5 6.091 4.673

%OS 25.38 25.38 25.38 25.38

Ts 4.26 1.33 1.64 2.14

Tp 1.46 0.46 0.56 0.733

Kp 2.372 10.25 10.6 8.304

eð1Þ 0.297 0.089 0.086 0.107

Third pole �6:123 None �3:127 �4:262

Zero None None �3 �4

Comments Second-order
approx. OK

Pure
second-order

Second-order
approx. OK

Second-order
approx. OK
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results obtained from the root locus of each of the design cases shown in
Figure 9.15.

In summary, although compensation methods c and d yield slower responses
than method b, the addition of ideal derivative compensation shortened the response
time in each case while keeping the percent overshoot the same. This change can best
be seen in the settling time and peak time, where there is at least a doubling of speed
across all of the cases of compensation. An added benefit is the improvement in the
steady-state error, even though lag compensation was not used. Here the steady-state
error of the compensated system is at least one-third that of the uncompensated
system, as seen by eð1Þ and Kp. All systems in Table 9.2 are Type 0, and some steady-
state error is expected. The reader must not assume that, in general, improvement in
transient response always yields an improvement in steady-state error.

The time response of each case in Table 9.2 is shown in Figure 9.16. We see that
the compensated responses are faster and exhibit less error than the uncompensated
response.

Now that we have seen what ideal derivative compensation can do, we are
ready to design our own ideal derivative compensator to meet a transient response
specification. Basically, we will evaluate the sum of angles from the open-loop poles
and zeros to a design point that is the closed-loop pole that yields the desired
transient response. The difference between 180� and the calculated angle must be the
angular contribution of the compensator zero. Trigonometry is then used to locate
the position of the zero to yield the required difference in angle.

Example 9.3

Ideal Derivative Compensator Design

PROBLEM: Given the system of Figure 9.17, design an ideal derivative compen-
sator to yield a 16% overshoot, with a threefold reduction in settling time.

SOLUTION: Let us first evaluate the performance of the un-
compensated system operating with 16% overshoot. The root locus
for the uncompensated system is shown in Figure 9.18. Since 16%
overshoot is equivalent to z ¼ 0:504, we search along that damping
ratio line for an odd multiple of 180� and find that the dominant,
second-order pair of poles is at �1:205 � j2:064. Thus, the settling

FIGURE 9.16 Uncompensated
system and ideal derivative
compensation solutions from
Table 9.2
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FIGURE 9.17 Feedback control system for
Example 9.3
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time of the uncompensated system is

Ts ¼ 4

zvn
¼ 4

1:205
¼ 3:320 ð9:13Þ

Since our evaluation of percent overshoot and settling time is based upon a
second-order approximation, we must check the assumption by finding the third
pole and justifying the second-order approximation. Searching beyond �6 on
the real axis for a gain equal to the gain of the dominant, second-order pair,
43.35, we find a third pole at �7:59, which is over six times as far from the jv-axis
as the dominant, second-order pair. We conclude that our approximation is
valid. The transient and steady-state error characteristics of the uncompensated
system are summarized in Table 9.3.

s-plane

jω

σ

K = 43.35

–1.205 + j2.064

ζ  = 0.504

    = Closed-loop pole
    = Open-loop pole

j1

–1 0–2–34–56–7

j2

j3

–7.59

120.26°

––

FIGURE 9.18 Root locus for uncompensated system shown in Figure 9.17

TABLE 9.3 Uncompensated and compensated system characteristic of Example 9.3

Uncompensated Simulation Compensated Simulation

Plant and compensator
K

sðsþ 4Þðsþ 6Þ
Kðsþ 3:006Þ
sðsþ 4Þðsþ 6Þ

Dominant poles �1:205 � j2:064 �3:613 � j6:193

K 43.35 47.45

z 0.504 0.504

vn 2.39 7.17

%OS 16 14.8 16 11.8

Ts 3.320 3.6 1.107 1.2

Tp 1.522 1.7 0.507 0.5

Kv 1.806 5.94

eð1Þ 0.554 0.168

Third pole �7:591 �2:775

Zero None �3:006

Comments Second-order
approx. OK

Pole-zero
not canceling

Virtual Experiment 9.1
PD Controller Design

Put theory into practice and
use root-locus to design a PD
controller for the Quanser Ball
and Beam using LabVIEW.
The Ball and Beam is an un-
stable system, similar to exo-
thermic chemical processes
that have to be stabilized to
avoid overheating.

Virtual experiments are found
on WileyPLUS.
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Now we proceed to compensate the system. First we find the location of the
compensated system’s dominant poles. In order to have a threefold reduction in the
settling time, the compensated system’s settling time will be one-third of Eq. (9.13).
The new settling time will be 1.107. Therefore, the real part of the compensated
system’s dominant, second-order pole is

s ¼ 4

Ts
¼ 4

1:107
¼ 3:613 ð9:14Þ

Figure 9.19 shows the designed dominant, second-order pole, with a real part equal
to �3:613 and an imaginary part of

vd ¼ 3:613 tanð180� � 120:26�Þ ¼ 6:193 ð9:15Þ
Next we design the location of the compensator zero. Input the uncompensated

system’s poles and zeros in the root locus program as well as the design point
�3:613 � j6:193 as a test point. The result is the sum of the angles to the design
point of all the poles and zeros of the compensated system except for those of
the compensator zero itself. The difference between the result obtained and
180� is the angular contribution required of the compensator zero. Using the
open-loop poles shown in Figure 9.19 and the test point, �3:613 þ j6:193, which
is the desired dominant second-order pole, we obtain the sum of the angles as
�275:6�. Hence, the angular contribution required from the compensator zero
for the test point to be on the root locus is þ275:6� � 180� ¼ 95:6�. The geom-
etry is shown in Figure 9.20, where we now must solve for �s, the location of
the compensator zero.

From the figure,

6:193

3:613 � s
¼ tanð180� � 95:6�Þ ð9:16Þ

Thus, s ¼ 3:006. The complete root locus for the compensated system is shown in
Figure 9.21.

Table 9.3 summarizes the results for both the uncompensated system and the
compensated system. For the uncompensated system, the estimate of the transient

FIGURE 9.19 Compensated
dominant pole superimposed
over the uncompensated root
locus for Example 9.3
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response is accurate since the third pole is at least five times the real part of the
dominant, second-order pair. The second-order approximation for the compen-
sated system, however, may be invalid because there is no approximate closed-
loop third-pole and zero cancellation between the closed-loop pole at �2:775 and
the closed-loop zero at �3:006. A simulation or a partial-fraction expansion of the
closed-loop response to compare the residue of the pole at �2:775 to the residues
of the dominant poles at �3:613 � j6:193 is required. The results of a simulation
are shown in the table’s second column for the uncompensated system and the
fourth column for the compensated system. The simulation results can be
obtained using MATLAB (discussed at the end of this example) or a program
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FIGURE 9.21 Root locus for
the compensated system of
Example 9.3
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FIGURE 9.20 Evaluating the
location of the compensating
zero for Example 9.3
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like the state-space step-response program described in Appendix H.1 at www.
wiley.com/college/nise. The percent overshoot differs by 3% between the un-
compensated and compensated systems, while there is approximately a threefold
improvement in speed as evaluated from the settling time.

The final results are displayed in Figure 9.22, which compares the un-
compensated system and the faster compensated system.

Students who are using MATLAB should now run ch9p1 in Appendix B.
MATLAB will be used to design a PD controller. You will input the
desired percent overshoot from the keyboard. MATLAB will plot the
root locus of the uncompensated system and the percent overshoot
line. You will interactively select the gain, after which MATLAB
will display the performance characteristics of the un-
compensated system and plot its step response. Using these char-
acteristics, you will input the desired settling time. MATLAB
will design the PD controller, enumerate its performance char-
acteristics, and plot a step response. This exercise solves Exam-
ple 9.3 using MATLAB.

Once we decide on the location of the compensating zero,
how do we implement the ideal derivative, or PD controller? The
ideal integral compensator that improved steady-state error was
implemented with a proportional-plus-integral (PI) controller.
The ideal derivative compensator used to improve the transient
response is implemented with a proportional-plus-derivative
(PD) controller. For example, in Figure 9.23 the transfer function
of the controller is

GcðsÞ ¼ K2sþK1 ¼ K2 sþK1

K2

� �
ð9:17Þ

Hence, K1=K2 is chosen to equal the negative of the compensator zero, and K2 is
chosen to contribute to the required loop-gain value. Later in the chapter, we will
study circuits that can be used to approximate differentiation and produce gain.

While the ideal derivative compensator can improve the transient response of
the system, it has two drawbacks. First, it requires an active circuit to perform the

FIGURE 9.22 Uncompensated
and compensated system step
responses of Example 9.3
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differentiation. Second, as previously mentioned, differentiation is a noisy process:
The level of the noise is low, but the frequency of the noise is high compared to the
signal. Differentiation of high frequencies can lead to large unwanted signals or
saturation of amplifiers and other components. The lead compensator is a passive
network used to overcome the disadvantages of ideal differentiation and still retain
the ability to improve the transient response.

Lead Compensation
Just as the active ideal integral compensator can be approximated with a passive lag
network, an active ideal derivative compensator can be approximated with a passive
lead compensator. When passive networks are used, a single zero cannot be
produced; rather, a compensator zero and a pole result. However, if the pole is
farther from the imaginary axis than the zero, the angular contribution of the
compensator is still positive and thus approximates an equivalent single zero. In
other words, the angular contribution of the compensator pole subtracts from the
angular contribution of the zero but does not preclude the use of the compensator to
improve transient response, since the net angular contribution is positive, just as for a
single PD controller zero.

The advantages of a passive lead network over an active PD controller are that
(1) no additional power supplies are required and (2) noise due to differentiation is
reduced. The disadvantage is that the additional pole does not reduce the number of
branches of the root locus that cross the imaginary axis into the right–half-plane,
while the addition of the single zero of the PD controller tends to reduce the number
of branches of the root locus that cross into the right half-plane.

Let us first look at the concept behind lead compensation. If we select a desired
dominant, second-order pole on the s-plane, the sum of the angles from the
uncompensated system’s poles and zeros to the design point can be found. The
difference between 180� and the sum of the angles must be the angular contribution
required of the compensator.

For example, looking at Figure 9.24, we see that

u2 � u1 � u3 � u4 þ u5 ¼ ð2kþ 1Þ180� ð9:18Þ
where ðu2 � u1Þ ¼ uc is the angular contribution of the lead compensator. From
Figure 9.24 we see that uc is the angle of a ray extending from the design point and
intersecting the real axis at the pole value and zero value of the compensator. Now
visualize this ray rotating about the desired closed-loop pole location and

TryIt 9.2

Use MATLAB, the Control Sys-
tem Toobox, and the following
steps to use SISOTOOL to per-
form the design of Example 9.3.

1. Type SISOTOOL in the
MATLAB Command
Window.

2. Select Import in the File
menu of the SISO Design
for SISO Design Task
Window.

3. In theData field for G, type
zpk([],[0,-4,-6],1)
and hit ENTER on the
keyboard. Click OK.

4. On the Edit menu choose
SISO Tool Preferences . . .
and select Zero/pole/gain:

under the Options tab.
Click OK.

5. Right-click on the root locus
white space and choose De-
signRequirements/New . . .

6. Choose Percent overshoot
and type in 16. Click OK.

7. Right-click on the root locus
white space and choose De-
signRequirements/New . . .

8. Choose Settling time and
click OK.

9. Drag the settling time ver-
tical line to the intersection
of the root locus and 16%
overshoot radial line.

10. Read the settling time at
the bottom of the window.

11. Drag the settling time ver-
tical line to a settling time
that is 1/3 of the value
found in Step 9.

12. Click on a redzero icon in the
menu bar. Place the zero on
the root locus real axis by
clickingagainontherealaxis.

13. Left-click on the real-axis
zero and drag it along the
real axis until the root locus
intersects the settling time
and percent overshoot lines.

14. Drag a red square along the
root locus until it is at the
intersection of the root lo-
cus, settling time line, and
the percent overshoot line.

15. Click the Compensator Ed-
itor tab of the Control and
Estimation Tools Manager
window to see the resulting
compensator, including the
gain.
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FIGURE 9.24 Geometry of lead compensation
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intersecting the real axis at the compensator pole and zero, as illustrated in Figure
9.25. We realize that an infinite number of lead compensators could be used to meet
the transient response requirement.

How do the possible lead compensators differ? The differences are in the
values of static error constants, the gain required to reach the design point on the
compensated root locus, the difficulty in justifying a second-order approximation
when the design is complete, and the ensuing transient response.

For design, we arbitrarily select either a lead compensator pole or zero and find
the angular contribution at the design point of this pole or zero along with the system’s
open-loop poles and zeros. The difference between this angle and 180� is the required
contribution of the remaining compensator pole or zero. Let us look at an example.

Example 9.4

Lead Compensator Design

PROBLEM: Design three lead compensators for the system of Figure 9.17 that will
reduce the settling time by a factor of 2 while maintaining 30% overshoot. Compare

the system characteristics between the three designs.

SOLUTION: First determine the characteristics of the
uncompensated system operating at 30% overshoot to
see what the uncompensated settling time is. Since 30%
overshoot is equivalent to a damping ratio of 0.358, we
search along the z ¼ 0:358 line for the uncompensated
dominant poles on the root locus, as shown in Figure
9.26. From the pole’s real part, we calculate the un-
compensated settling time as Ts ¼ 4=1:007 ¼ 3:972
seconds. The remaining characteristics of the un-
compensated system are summarized in Table 9.4.

Next we find the design point. A twofold reduc-
tion in settling time yields Ts ¼ 3:972=2 ¼ 1:986 sec-
onds, from which the real part of the desired pole
location is �zvn ¼ �4=Ts ¼ �2:014. The imaginary
part is vd ¼ �2:014 tanð110:98�Þ ¼ 5:252.

We continue by designing the lead compensator.
Arbitrarily assume a compensator zero at �5 on the
real axis as a possible solution. Using the root locus
program, sum the angles from both this zero and the

FIGURE 9.25 Three of the
infinite possible lead
compensator solutions
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FIGURE 9.26 Lead compensator design, showing evaluation
of uncompensated and compensated dominant poles for
Example 9.4
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uncompensated system’s poles and zeros, using the design point as a test point. The
resulting angle is �172:69�. The difference between this angle and 180� is the angular
contribution required from the compensator pole in order to place the design point on
the root locus. Hence, an angular contribution of �7:31� is required from the
compensator pole.

The geometry shown in Figure 9.27 is used to calculate the location of the
compensator pole. From the figure,

5:252

pc � 2:014
¼ tan 7:31� ð9:19Þ

from which the compensator pole is found to be

pc ¼ 42:96 ð9:20Þ
The compensated system root locus is sketched in Figure 9.28.

TABLE 9.4 Comparison of lead compensation designs for Example 9.4

Uncompensated Compensation a Compensation b Compensation c

Plant and
compensator

K

sðsþ 4Þðsþ 6Þ
Kðsþ 5Þ

sðsþ 4Þðsþ 6Þðsþ 42:96Þ
Kðsþ 4Þ

sðsþ 4Þðsþ 6Þðsþ 20:09Þ
Kðsþ 2Þ

sðsþ 4Þðsþ 6Þðsþ 8:971Þ

Dominant poles �1:007 � j2:627 �2:014 � j5:252 �2:014 � j5:252 �2:014 � j5:252

K 63.21 1423 698.1 345.6

z 0.358 0.358 0.358 0.358

vn 2.813 5.625 5.625 5.625

%OS� 30 (28) 30 (30.7) 30 (28.2) 30 (14.5)

Ts
� 3.972 (4) 1.986 (2) 1.986 (2) 1.986 (1.7)

Tp
� 1.196 (1.3) 0.598 (0.6) 0.598 (0.6) 0.598 (0.7)

Kv 2.634 6.9 5.791 3.21

eð1Þ 0.380 0.145 0.173 0.312

Other poles �7:986 �43.8, �5:134 �22:06 �13:3, �1:642

Zero None �5 None �2

Comments Second-order
approx. OK

Second-order
approx. OK

Second-order
approx. OK

No pole-zero
cancellation

�
Simulation results are shown in parentheses.

jω

s-plane

j5.252

–2.014–pc

Desired
compensated

dominant pole

Note: This figure is not drawn to scale.

 = Closed-loop pole
 = Open-loop pole

7.31°
σ

FIGURE 9.27 s-plane picture
used to calculate the location
of the compensator pole for
Example 9.4
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FIGURE 9.28 Compensated
system root locus
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In order to justify our estimates of percent overshoot and settling time, we
must show that the second-order approximation is valid. To perform this validity
check, we search for the third and fourth closed-loop poles found beyond �42:96
and between �5 and �6 in Figure 9.28. Searching these regions for the gain equal to
that of the compensated dominant pole, 1423, we find that the third and fourth
poles are at �43:8 and �5:134, respectively. Since �43:8 is more than 20 times the
real part of the dominant pole, the effect of the third closed-loop pole is negligible.
Since the closed-loop pole at �5:134 is close to the zero at �5, we have pole-zero
cancellation, and the second-order approximation is valid.

All results for this design and two other designs, which place the compensator
zero arbitrarily at �2 and �4 and follow similar design techniques, are summarized
in Table 9.4. Each design should be verified by a simulation, which could consist of
using MATLAB (discussed at the end of this example) or the state-space model
and the step-response program discussed in Appendix H.1 at www.wiley.com/
college/nise. We have performed a simulation for this design problem, and the
results are shown by parenthetical entries next to the estimated values in the table.
The only design that disagrees with the simulation is the case where the compen-
sator zero is at �2. For this case the closed-loop pole and zero do not cancel.

A sketch of the root locus, which you should generate, shows why the effect of
the zero is pronounced, causing the response to be different from that predicted.
Placing the zero to the right of the pole at �4 creates a portion of the root locus that
is between the origin and the zero. In other words, there is a closed-loop pole closer
to the origin than the dominant poles, with little chance of pole-zero cancellation
except at high gain. Thus, a quick sketch of the root locus gives us information from
which we can make better design decisions. For this example, we want to place the
zero on, or to the left of, the pole at �4, which gives a better chance for pole-zero
cancellation and for a higher-order pole that is to the left of the dominant poles and
subsequently faster. This is verified by the fact that our results show good second-
order approximations for the cases where the zero was placed at �4 and �5. Again,
decisions about where to place the zero are based on simple rules of thumb and
must be verified by simulations at the end of the design.

Let us now summarize the results shown in Table 9.4. First we notice
differences in the following:

1. The position of the arbitrarily selected zero

2. The amount of improvement in the steady-state error

3. The amount of required gain, K

4. The position of the third and fourth poles and their relative effect upon the
second-order approximation. This effect is measured by their distance from the
dominant poles or the degree of cancellation with the closed-loop zero.

Once a simulation verifies desired performance, the choice of compensation
can be based upon the amount of gain required or the improvement in steady-state
error that can be obtained without a lag compensator.

The results of Table 9.4 are supported by simulations of the step response,
shown in Figure 9.29 for the uncompensated system and the three lead compensa-
tion solutions.

Students who are using MATLAB should now run ch9p2 in Appendix B.
MATLAB will be used to design a lead compensator. You will input
the desired percent overshoot from the keyboard. MATLAB
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will plot the root locus of the uncompensated system and the
percent overshoot line. You will interactively select the gain,
after which MATLAB will display the performance characteris-
tics of the uncompensated system and plot its step response.
Using these characteristics,you will input the desired set-
tling time and a zero value for the lead compensator.You will
then interactively select a value for the compensator pole.
MATLAB will respond with a root locus.You can then continue
selecting pole values until the root locus goes through the
desired point.MATLAB will display the lead compensator,enu-
merate its performance characteristics,and plot a step re-
sponse.This exercise solves Example 9.4 using MATLAB.

Skill-Assessment Exercise 9.2

PROBLEM: A unity feedback system with the forward transfer function

GðsÞ ¼ K

sðsþ 7Þ
is operating with a closed-loop step response that has 15% overshoot. Do the
following:

a. Evaluate the settling time.

b. Design a lead compensator to decrease the settling time by three times.
Choose the compensator’s zero to be at �10.

ANSWERS:

a. Ts ¼ 1:143 s

b. GleadðsÞ ¼ sþ 10

sþ 25:52
; K ¼ 476:3

The complete solution is at www.wiley.com/college/nise.

Compensation c
Uncompensated

Compensation a, b

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
0 1 2 3

c(
t)

Time (seconds)
4

FIGURE 9.29 Uncompensated
system and lead compensation
responses for Example 9.4
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9.4 Improving Steady-State Error and Transient Response

We now combine the design techniques covered in Sections 9.2 and 9.3 to obtain
improvement in steady-state error and transient response independently. Basically,
we first improve the transient response by using the methods of Section 9.3. Then we
improve the steady-state error of this compensated system by applying the methods
of Section 9.2. A disadvantage of this approach is the slight decrease in the speed of
the response when the steady-state error is improved.

As an alternative, we can improve the steady-state error first and then follow
with the design to improve the transient response. A disadvantage of this approach is
that the improvement in transient response in some cases yields deterioration in the
improvement of the steady-state error, which was designed first. In other cases,
the improvement in transient response yields further improvement in steady-state
errors. Thus, a system can be overdesigned with respect to steady-state errors.
Overdesign is usually not a problem unless it affects cost or produces other design
problems. In this textbook, we first design for transient response and then design for
steady-state error.

The design can use either active or passive compensators, as previously
described. If we design an active PD controller followed by an active PI controller,
the resulting compensator is called a proportional-plus-integral-plus-derivative
(PID) controller. If we first design a passive lead compensator and then design a
passive lag compensator, the resulting compensator is called a lag-lead compensator.

PID Controller Design
A PID controller is shown in Figure 9.30. Its transfer function is

GcðsÞ ¼ K1 þK2

s
þK3s ¼ K1sþK2 þK3s2

s
¼

K3 s2 þK1

K3
sþK2

K3

� �

s
ð9:21Þ

which has two zeros plus a pole at the origin. One zero and the pole at the origin can
be designed as the ideal integral compensator; the other zero can be designed as the
ideal derivative compensator.

The design technique, which is demonstrated in Example 9.5, consists of the
following steps:

1. Evaluate the performance of the uncompensated system to determine how much
improvement in transient response is required.

2. Design the PD controller to meet the transient response specifications. The
design includes the zero location and the loop gain.

FIGURE 9.30 PID controller

K1

K2
s

K3s

R(s) C(s)
+

G(s)
–

+ +
+
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3. Simulate the system to be sure all requirements have been met.

4. Redesign if the simulation shows that requirements have not been met.

5. Design the PI controller to yield the required steady-state error.

6. Determine the gains, K1, K2, and K3, in Figure 9.30.

7. Simulate the system to be sure all requirements have been met.

8. Redesign if simulation shows that requirements have not been met.

Example 9.5

PID Controller Design

PROBLEM: Given the system of Figure 9.31, design a PID
controller so that the system can operate with a peak time
that is two-thirds that of the uncompensated system at 20%
overshoot and with zero steady-state error for a step input.

SOLUTION: Note that our solution follows the eight-step pro-
cedure described earlier.

Step 1 Let us first evaluate the uncompensated system operating at 20% over-
shoot. Searching along the 20% overshoot line ðz ¼ 0:456Þ in Figure 9.32,
we find the dominant poles to be �5:415 � j10:57 with a gain of 121.5. A
third pole, which exists at �8:169, is found by searching the region

K(s + 8)

(s + 3)(s + 6)(s + 10)

R(s) C(s)

–

+ E(s)

FIGURE 9.31 Uncompensated feedback control
system for Example 9.5
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Uncompensated
dominant pole
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σ
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ω

j2

j4

j6

j8

j10

j12
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−4.6

= 0.456

= Closed-loop pole
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ζ

FIGURE 9.32 Root locus for the uncompensated system of Example 9.5
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between�8 and�10 for a gain equivalent to that at the dominant poles. The
complete performance of the uncompensated system is shown in the first
column of Table 9.5, where we compare the calculated values to those
obtained through simulation (Figure 9.35). We estimate that the un-
compensated system has a peak time of 0.297 second at 20% overshoot.

Step 2 To compensate the system to reduce the peak time to two-thirds of that of the
uncompensated system, we must first find the compensated system’s domi-
nant pole location. The imaginary part of the compensated dominant pole is

vd ¼ p

Tp
¼ p

ð2=3Þð0:297Þ ¼ 15:87 ð9:22Þ

Thus, the real part of the compensated dominant pole is

s ¼ vd

tan 117:13� ¼ �8:13 ð9:23Þ
Next we design the compensator. Using the geometry shown in Figure 9.33,

we calculate the compensating zero’s location. Using the root locus program,
we find the sum of angles from the uncompensated system’s poles and zeros to
the desired compensated dominant pole to be�198:37�. Thus, the contribution
required from the compensator zero is 198:37� � 180� ¼ 18:37�. Assume that
the compensator zero is located at �zc, as shown in Figure 9.33. Since

15:87

zc � 8:13
¼ tan 18:37� ð9:24Þ

then

zc ¼ 55:92 ð9:25Þ
Thus, the PD controller is

GPDðsÞ ¼ ðsþ 55:92Þ ð9:26Þ

TABLE 9.5 Predicted characteristics of uncompensated, PD-, and PID-compensated systems of Example 9.5

Uncompensated PD-compensated PID-compensated

Plant and compensator
Kðsþ 8Þ

ðsþ 3Þðsþ 6Þðsþ 10Þ
Kðsþ 8Þðsþ 55:92Þ
ðsþ 3Þðsþ 6Þðsþ 10Þ

Kðsþ 8Þðsþ 55:92Þðsþ 0:5Þ
ðsþ 3Þðsþ 6Þðsþ 10Þs

Dominant poles �5:415 � j10:57 �8:13 � j15:87 �7:516 � j14:67

K 121.5 5.34 4.6

z 0.456 0.456 0.456

vn 11.88 17.83 16.49

%OS 20 20 20

Ts 0.739 0.492 0.532

Tp 0.297 0.198 0.214

Kp 5.4 13.27 1
eð1Þ 0.156 0.070 0

Other poles �8:169 �8:079 �8:099, �0:468

Zeros �8 �8, �55:92 �8, �55:92, �0:5

Comments Second-order
approx. OK

Second-order
approx. OK

Zeros at �55:92
and �0:5 not canceled

–zc
–8.13

j15.87

s-plane

σ

PD-compensated
dominant pole

ωj

Note: This figure is not drawn to scale.

 = Closed-loop pole

18.37°

FIGURE 9.33 Calculating the
PD compensator zero for
Example 9.5
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The complete root locus for the PD-compensated system is sketched in
Figure 9.34. Using a root locus program, the gain at the design point is 5.34.
Complete specifications for ideal derivative compensation are shown in
the third column of Table 9.5.

Steps 3 and 4 We simulate the PD-compensated system, as shown in Figure 9.35.
We see the reduction in peak time and the improvement in steady-state
error over the uncompensated system.

Step 5 After we design the PD controller, we design the ideal integral compen-
sator to reduce the steady-state error to zero for a step input. Any ideal
integral compensator zero will work, as long as the zero is placed close to
the origin. Choosing the ideal integral compensator to be

GPIðsÞ ¼ sþ 0:5

s
ð9:27Þ

–10 –8 –6 –3 0

117.13°

j

K = 5.34

ζ = 0.456

–55.92

ω

σ

–8.13 + j15.87

–106

s-plane

PD-compensated
dominant pole

Note: This figure is not drawn to scale.

 = Closed-loop pole
 = Open-loop pole

FIGURE 9.34 Root locus for PD-compensated system of Example 9.5
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we sketch the root locus for the PID-compensated system, as shown in
Figure 9.36. Searching the 0.456 damping ratio line, we find the dominant,
second-order poles to be �7:516 � j14:67, with an associated gain of 4.6.
The remaining characteristics for the PID-compensated system are
summarized in the fourth column of Table 9.5.

Step 6 Now we determine the gains, K1,K2, and K3, in Figure 9.30. From Eqs.
(9.26) and (9.27), the product of the gain and the PID controller is

GPIDðsÞ ¼ Kðsþ 55:92Þðsþ 0:5Þ
s

¼ 4:6ðsþ 55:92Þðsþ 0:5Þ
s

¼ 4:6ðs2 þ 56:42sþ 27:96Þ
s

ð9:28Þ

Matching Eqs. (9.21) and (9.28), K1 ¼ 259:5, K2 ¼ 128:6, and K3 ¼ 4:6

Steps 7 and 8 Returning to Figure 9.35, we summarize the results of our design. PD
compensation improved the transient response by decreasing the time re-
quired to reach the first peak as well as yielding some improvement in the
steady-state error. The complete PID controller further improved the steady-
state error without appreciably changing the transient response designed with
the PD controller. As we have mentioned before, the PID controller exhibits a
slower response, reaching the final value of unity at approximately 3 seconds. If
this is undesirable, the speed of the system must be increased by redesigning
the ideal derivative compensator or moving the PI controller zero farther from
the origin. Simulation plays an important role in this type of design since our
derived equation for settling time is not applicable for this part of the response,
where there is a slow correction of the steady-state error.

–10 –8 –6 –3 0

117.13°

–0.5

s-plane

j

K = 4.6

ζ = 0.456

–55.92

ω

σ

–7.516 + j14.67

Note: This figure is not drawn to scale.

 = Closed-loop pole
 = Open-loop pole

PID-compensated
dominant pole

–106

FIGURE 9.36 Root locus for PID-compensated system of Example 9.5
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Lag-Lead Compensator Design
In the previous example, we serially combined the concepts of ideal derivative and
ideal integral compensation to arrive at the design of a PID controller that improved
both the transient response and the steady-state error performance. In the next
example, we improve both transient response and the steady-state error by using a
lead compensator and a lag compensator rather than the ideal PID. Our compensa-
tor is called a lag-lead compensator.

We first design the lead compensator to improve the transient response. Next
we evaluate the improvement in steady-state error still required. Finally, we design
the lag compensator to meet the steady-state error requirement. Later in the chapter
we show circuit designs for the passive network. The following steps summarize the
design procedure:

1. Evaluate the performance of the uncompensated system to determine how much
improvement in transient response is required.

2. Design the lead compensator to meet the transient response specifications. The
design includes the zero location, pole location, and the loop gain.

3. Simulate the system to be sure all requirements have been met.

4. Redesign if the simulation shows that requirements have not been met.

5. Evaluate the steady-state error performance for the lead-compensated system to
determine how much more improvement in steady-state error is required.

6. Design the lag compensator to yield the required steady-state error.

7. Simulate the system to be sure all requirements have been met.

8. Redesign if the simulation shows that requirements have not been met.

Example 9.6

Lag-Lead Compensator Design

PROBLEM: Design a lag-lead compensator for the system of Fig-
ure 9.37 so that the system will operate with 20% overshoot and a
twofold reduction in settling time. Further, the compensated system
will exhibit a tenfold improvement in steady-state error for a ramp
input.

SOLUTION: Again, our solution follows the steps just described.

Step 1 First we evaluate the performance of the uncompensated sys-
tem. Searching along the 20% overshoot line ðz ¼ 0:456Þ in
Figure 9.38,we findthe dominant polesat�1:794 � j3:501, withagainof 192.1.
The performance of the uncompensated system is summarized in Table 9.6.

Step 2 Next we begin the lead compensator design by selecting the location of the
compensated system’s dominant poles. In order to realize a twofold reduction
in settling time, the real part of the dominant pole must be increased by a factor
of 2, since the settling time is inversely proportional to the real part. Thus,

�zvn ¼ �2ð1:794Þ ¼ �3:588 ð9:29Þ
The imaginary part of the design point is

vd ¼ zvn tan 117:13� ¼ 3:588 tan 117:13� ¼ 7:003 ð9:30Þ

K
s(s + 6)(s + 10)

E(s)R(s) C(s)

–

+

FIGURE 9.37 Uncompensated system for
Example 9.6
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Now we design the lead compensator. Arbitrarily select a location
for the lead compensator zero. For this example, we select the location of
the compensator zero coincident with the open-loop pole at �6. This
choice will eliminate a zero and leave the lead-compensated system with
three poles, the same number that the uncompensated system has.

We complete the design by finding the location of the compensator
pole. Using the root locus program, sum the angles to the design point from
the uncompensated system’s poles and zeros and the compensator zero
and get �164:65�. The difference between 180� and this quantity is the
angular contribution required from the compensator pole, or �15:35�.
Using the geometry shown in Figure 9.39,

7:003

pc � 3:588
¼ tan 15:35� ð9:31Þ

from which the location of the compensator pole, pc, is found to be �29:1.

FIGURE 9.38 Root locus for
uncompensated system of
Example 9.6
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TABLE 9.6 Predicted characteristics of uncompensated, lead-compensated, and lag-lead-compensated systems of
Example 9.6

Uncompensated Lead-compensated Lag-lead-compensated

Plant and compensator
K

sðsþ 6Þðsþ 10Þ
K

sðsþ 10Þðsþ 29:1Þ
Kðsþ 0:04713Þ

sðsþ 10Þðsþ 29:1Þðsþ 0:01Þ
Dominant poles �1:794 � j3:501 �3:588 � j7:003 �3:574 � j6:976

K 192.1 1977 1971

z 0.456 0.456 0.456

vn 3.934 7.869 7.838

%OS 20 20 20

Ts 2.230 1.115 1.119

Tp 0.897 0.449 0.450

Kv 3.202 6.794 31.92

eð1Þ 0.312 0.147 0.0313

Third pole �12:41 �31:92 �31:91, �0:0474

Zero None None �0:04713

Comments Second-order approx. OK Second-order approx. OK Second-order approx. OK
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The complete root locus for the lead-compensated system is sketched
in Figure 9.40. The gain setting at the design point is found to be 1977.

Steps 3 and 4 Check the design with a simulation. (The result for the lead-
compensated system is shown in Figure 9.42 and is satisfactory.)

Step 5 Continue by designing the lag compensator to improve the steady-state
error. Since the uncompensated system’s open-loop transfer function is

GðsÞ ¼ 192:1

sðsþ 6Þðsþ 10Þ ð9:32Þ

the static error constant, Kv, which is inversely proportional to the steady-
state error, is 3.201. Since the open-loop transfer function of the lead-
compensated system is

GLCðsÞ ¼ 1977

sðsþ 10Þðsþ 29:1Þ ð9:33Þ

the static error constant, Kv, which is inversely proportional to the steady-
state error, is 6.794. Thus, the addition of lead compensation has improved
the steady-state error by a factor of 2.122. Since the requirements of the
problem specified a tenfold improvement, the lag compensator must be
designed to improve the steady-state error by a factor of 4.713 ð10=2:122 ¼
4:713Þ over the lead-compensated system.

j7.003

–3.588–pc

σ

ωj

s-plane

15.35°

 = Closed-loop pole
 = Open-loop pole

FIGURE 9.39 Evaluating the compensator pole for Example 9.6

–33 –30 –27 –24 –21 –18 –15 –12 –9 –6 –3 0

117.13°

jω
= 0.456

σ

s-plane

–3.588 + j7.003

–31.91

K = 1977

j3

j6

j9

= Closed-loop pole
= Open-loop pole

Compensated dominant pole

ζ

FIGURE 9.40 Root locus for lead-compensated system of Example 9.6
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Step 6 We arbitrarily choose the lag compensator pole at 0.01, which then places
the lag compensator zero at 0.04713, yielding

GlagðsÞ ¼ ðsþ 0:04713Þ
ðsþ 0:01Þ ð9:34Þ

as the lag compensator. The lag-lead-compensated system’s open-loop
transfer function is

GLLCðsÞ ¼ Kðsþ 0:04713Þ
sðsþ 10Þðsþ 29:1Þðsþ 0:01Þ ð9:35Þ

where the uncompensated system pole at �6 canceled the lead compen-
sator zero at �6. By drawing the complete root locus for the lag-lead-
compensated system and by searching along the 0.456 damping ratio line,
we find the dominant, closed-loop poles to be at �3:574 � j6:976, with a
gain of 1971. The lag-lead-compensated root locus is shown in Figure 9.41.

A summary of our design is shown in Table 9.6. Notice that the
lag-lead compensation has indeed increased the speed of the system, as
witnessed by the settling time or the peak time. The steady-state error
for a ramp input has also decreased by about 10 times, as seen
from eð1Þ.

Step 7 The final proof of our designs is shown by the simulations of Figures 9.42
and 9.43. The improvement in the transient response is shown in Figure
9.42, where we see the peak time occurring sooner in the lag-lead-
compensated system. Improvement in the steady-state error for a ramp
input is seen in Figure 9.43, where each step of our design yields more
improvement. The improvement for the lead-compensated system is
shown in Figure 9.43(a), and the final improvement due to the addition
of the lag is shown in Figure 9.43(b).

ζ = 0.456

σ

s-plane

–29.1

–31.91

–10 0

jω

–0.0474 –0.01

0.04713

K = 1971
–3.574 + j6.976

117.13°

Compensated
dominant pole

 = Closed-loop pole
 = Open-loop pole  

Note: This figure is not drawn to scale.

FIGURE 9.41 Root locus for lag-lead-compensated system of Example 9.6
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In the previous example, we canceled the system pole at �6 with the lead
compensator zero. The design technique is the same if you place the lead compen-
sator zero at a different location. Placing a zero at a different location and not
canceling the open-loop pole yields a system with one more pole than the example.
This increased complexity could make it more difficult to justify a second-order
approximation. In any case, simulations should be used at each step to verify
performance.

Uncompensated
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0
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Lead- and lag-lead-compensated
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FIGURE 9.42 Improvement in
step response for lag-lead-
compensated system of
Example 9.6
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FIGURE 9.43 Improvement
in ramp response error for
the system of Example 9.6:
a. lead-compensated;
b. lag-lead-compensated
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Notch Filter
If a plant, such as a mechanical system, has high-frequency vibration modes, then a
desired closed-loop response may be difficult to obtain. These high-frequency
vibration modes can be modeled as part of the plant’s transfer function by pairs
of complex poles near the imaginary axis. In a closed-loop configuration, these poles
can move closer to the imaginary axis or even cross into the right half-plane, as
shown in Figure 9.44(a). Instability or high-frequency oscillations superimposed
over the desired response can result (see Figure 9.44(b)).

One way of eliminating the high-frequency oscillations is to cascade a notch
filter2 with the plant (Kuo, 1995), as shown in Figure 9.44(c). The notch filter has

jω

σ

s-plane

Plant’s high-frequency poles
Plant’s poles

(a)

R
es

po
ns

e

Time

(b)

σ

s-plane

jω

(c)

jω

σ

s-plane

Notch filter zeros and
plant high-frequency poles

Plant’s poles

Notch filter poles

(d)

FIGURE9.44 a.Root locus before cascading notch filter;b. typical closed-loop step response before cascading notch filter; c.pole-
zero plot of a notch filter; d. root locus after cascading notch filter; (figure continues)

2 The name of this filter comes from the shape of its magnitude frequency response characteristics, which
shows a dip near the damped frequency of the high-frequency poles. Magnitude frequency response is
discussed in Chapter 10.
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9.4 Improving Steady-State Error and Transient Response 493

zeros close to the low-damping-ratio poles of the plant as well as two real poles.
Figure 9.44(d) shows that the root locus branch from the high-frequency poles now
goes a short distance from the high-frequency pole to the notch filter’s zero. The
high-frequency response will now be negligible because of the pole-zero cancellation
(see Figure 9.44(e)). Other cascade compensators can now be designed to yield a
desired response. The notch filter will be applied to Progressive Analysis and Design
Problem 55 near the end of this chapter.

Skill-Assessment Exercise 9.3

PROBLEM: A unity feedback system with forward transfer function

GðsÞ ¼ K

sðsþ 7Þ
is operating with a closed-loop step response that has 20% overshoot. Do the
following:

a. Evaluate the settling time.

b. Evaluate the steady-state error for a unit ramp input.

c. Design a lag-lead compensator to decrease the settling time by 2 times and
decrease the steady-state error for a unit ramp input by 10 times. Place the
lead zero at �3.

ANSWERS:

a. Ts ¼ 1:143 s

b. erampð1Þ ¼ 0:1189

c. GcðsÞ ¼ ðsþ 3Þðsþ 0:092Þ
ðsþ 9:61Þðsþ 0:01Þ ; K ¼ 205:4

The complete solution is at www.wiley.com/college/nise.

Before concluding this section, let us briefly summarize our discussion of
cascade compensation. In Sections 9.2, 9.3, and 9.4, we used cascade compensators to
improve transient response and steady-state error. Table 9.7 itemizes the types,
functions, and characteristics of these compensators.

R
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po
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e

Time

(e)

FIGURE 9.44 (Continued)
e. closed-loop step response
after cascading notch filter

www.wiley.com/college/nise
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TABLE 9.7 Types of cascade compensators

Function Compensator Transfer function Characteristics

Improve steady-state error PI K
sþ zc

s
1. Increases system type.

2. Error becomes zero.

3. Zero at �zc is small and negative.

4. Active circuits are required to implement.

Improve steady-state error Lag K
sþ zc
sþ pc

1. Error is improved but not driven to zero.

2. Pole at �pc is small and negative.

3. Zero at �zc is close to, and to the left of, the
pole at �pc.

4. Active circuits are not required to implement.

Improve transient response PD Kðsþ zcÞ 1. Zero at �zc is selected to put design point on
root locus.

2. Active circuits are required to implement.

3. Can cause noise and saturation; implement
with rate feedback or with a pole (lead).

Improve transient response Lead K
sþ zc
sþ pc

1. Zero at �zc and pole at �pc are selected to put
design point on root locus.

2. Pole at �pc is more negative than zero at �zc.

3. Active circuits are not required to implement.

Improve steady-state error and
transient response

PID K
ðsþ zlagÞðsþ zleadÞ

s
1. Lag zero at �zlag and pole at origin improve

steady-state error.

2. Lead zero at �zlead improves transient
response.

3. Lag zero at �zlag is close to, and to the left of,
the origin.

4. Lead zero at �zlead is selected to put design
point on root locus.

5. Active circuits required to implement.

6. Can cause noise and saturation; implement
with rate feedback or with an additional pole.

Improve steady-state error and
transient response

Lag-lead K
ðsþ zlagÞðsþ zleadÞ
ðsþ plagÞðsþ pleadÞ

1. Lag pole at �plag and lag zero at �zlag are used
to improve steady-state error.

2. Lead pole at �plead and lead zero at �zlead are
used to improve transient response.

3. Lag pole at �plag is small and negative.

4. Lag zero at �zlag is close to, and to the left of,
lag pole at �plag.

5. Lead zero at �zlead and lead pole at �plead are
selected to put design point on root locus.

6. Lead pole at �plead is more negative than lead
zero at �zlead.

7. Active circuits are not required to implement.
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9.5 Feedback Compensation

In Section 9.4, we used cascade compensation as a way to improve transient response
and steady-state response independently. Cascading a compensator with the plant is
not the only way to reshape the root locus to intersect the closed-loop s-plane poles
that yield a desired transient response. Transfer functions designed to be placed in a
feedback path can also reshape the root locus. Figure 9.45 is a generic configuration
showing a compensator, Hc(s), placed in the minor loop of a feedback control
system. Other configurations arise if we consider K unity, G2(s) unity, or both unity.

The design procedures for feedback compensation can be more complicated
than for cascade compensation. On the other hand, feedback compensation can yield
faster responses. Thus, the engineer has the luxury of designing faster responses into
portions of a control loop in order to provide isolation. For example, the transient
response of the ailerons and rudder control systems of an aircraft can be designed
separately to be fast in order to reduce the effect of their dynamic response on the
steering control loop. Feedback compensation can be used in cases where noise
problems preclude the use of cascade compensation. Also, feedback compensation
may not require additional amplification, since the signal passing through the
compensator originates at the high-level output of the forward path and is delivered
to a low-level input in the forward path. For example, letK andG2(s) in Figure 9.45 be
unity. The input to the feedback compensator,KfHc(s), is from the high-level output of
G1(s), while the output ofKfHc(s) is one of the low-level inputs intoK1. Thus, there is a
reduction in level through KfHc(s), and amplification is usually not required.

A popular feedback compensator is a rate sensor that acts as a differentiator. In
aircraft and ship applications, the rate sensor can be a rate gyro that responds with an
output voltage proportional to the input angular velocity. In many other systems this
rate sensor is implemented with a tachometer. A tachometer is a voltage generator
that yields a voltage output proportional to input rotational speed. This compensator
can easily be geared to the position output of a system. Figure 9.46 is a position

R(s)
K

Minor loop

K1
C(s)

G1(s) G2(s)

  Hc (s)

–

+

–

+

Major loop

Kf
FIGURE 9.45 Generic control
system with feedback
compensation.

Inertia Motor

Input
potentiometerTachometer

Output
potentiometer

FIGURE 9.46 A position
control system that uses a
tachometer as a differentiator
in the feedback path. Can you
see the similarity between this
system and the schematic on
the front endpapers?
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control system showing the gearing of the tachometer to the motor. You can see the
input and output potentiometers as well as the motor and inertial load. The block
diagram representation of a tachometer is shown in Figure 9.47(a), and its typical
position within a control loop is shown in Figure 9.47(b).

While this section shows methods for designing systems using rate feedback, it
also sets the stage for compensation techniques in Chapter 12, where not only rate but
all states including position will be fed back for proper control system performance.

We now discuss design procedures. Typically, the design of feedback compen-
sation consists of finding the gains, such as K, K1, and Kf in Figure 9.45, after
establishing a dynamic form for Hc(s). There are two approaches. The first is similar
to cascade compensation. Assume a typical feedback system, where G(s) is the
forward path and H(s) is the feedback. Now consider that a root locus is plotted from
G(s)H(s). With cascade compensation we added poles and zeros to G(s). With
feedback compensation, poles and zeros are added via H(s).

With the second approach, we design a specified performance for the minor
loop, shown in Figure 9.45, followed by a design of the major loop. Thus, the minor
loop, such as ailerons on an aircraft, can be designed with its own performance
specifications and operate within the major loop.

Approach 1
The first approach consists of reducing Figure 9.45 to Figure 9.48 by pushing K
to the right past the summing junction, pushing G2(s) to the left past the pickoff
point, and then adding the two feedback paths. Figure 9.48 shows that the loop
gain, G(s)H(s), is

GðsÞHðsÞ ¼ K1G1ðsÞ½KfHcðsÞ þKG2ðsÞ	 ð9:36Þ
Without feedback, KfHc(s), the loop gain is

GðsÞHðsÞ ¼ KK1G1ðsÞG2ðsÞ ð9:37Þ
Thus, the effect of adding feedback is to replace the poles and zeros of G2(s) with the
poles and zeros of ½KfHcðsÞ þKG2ðsÞ	. Hence, this method is similar to cascade
compensation in that we add new poles and zeros via H(s) to reshape the root locus
to go through the design point. However, one must remember that zeros of the
equivalent feedback shown in Figure 9.48, HðsÞ ¼ ½KfHcðsÞ þKG2ðsÞ	=KG2ðsÞ, are
not closed-loop zeros.

R(s)
K

Tachometer

C(s)

θ i(s)

(a)

(b)

Vo(s)

K1 G1(s)
–

+

–

+

Kf s

Kf s

FIGURE 9.47 a. Transfer function of a tachometer; b. tachometer feed-back compensation

KK1G1(s)G2(s)

KfHc(s) + KG2(s)

KG2(s)

R(s) C(s)

–

+

FIGURE 9.48 Equivalent block
diagram of Figure 9.45
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For example, if G2ðsÞ ¼ 1 and the minor-loop feedback, KfHc(s), is a rate
sensor, KfHcðsÞ ¼ Kf s, then from Eq. (9.36) the loop gain is

GðsÞHðsÞ ¼ KfK1G1ðsÞ sþ K

Kf

� �
ð9:38Þ

Thus, a zero at �K=Kf is added to the existing open-loop poles and zeros. This zero
reshapes the root locus to go through the desired design point. A final adjustment of
the gain, K1, yields the desired response. Again, you should verify that this zero is not
a closed-loop zero. Let us look at a numerical example.

Example 9.7

Compensating Zero via Rate Feedback

PROBLEM: Given the system of Figure 9.49(a), design rate feedback compensa-
tion, as shown in Figure 9.49(b), to reduce the settling time by a factor of 4 while
continuing to operate the system with 20% overshoot.

SOLUTION: First design a PD compensator. For the uncompensated system, search
along the 20% overshoot line ðz ¼ 0:456Þ and find that the dominant poles are at
�1:809 � j3:531, as shown in Figure 9.50. The estimated specifications for the

–

+ K1

s(s + 5)(s + 15)

E(s) C(s)R(s)

(a)

(b)

(c)

(d)

–

+
s(s + 5)(s + 15)

C(s)R(s)

–

+
s(s + 5)(s + 15)

C(s)R(s)

–

+
s[s2 + 20s + (75 + K1Kf)]

E(s) C(s)R(s)

Kf s

–

+
1

Kf  s +    1Kf

K1

K1

K1

FIGURE 9.49 a. System for Example 9.7; b. system with rate
feedback compensation; c. equivalent compensated system;
d. equivalent compensated system showing unity feedback
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FIGURE 9.50 Root locus for uncompensated system of
Example 9.7
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uncompensated system are shown in Table 9.8, and the step response is shown in
Figure 9.51. The settling time is 2.21 seconds and must be reduced by a factor of 4
to 0.55 second.

Next determine the location of the dominant poles for the compensated
system. To achieve a fourfold decrease in the settling time, the real part of the pole
must be increased by a factor of 4. Thus, the compensated pole has a real part of
4ð�1:809Þ ¼ �7:236. The imaginary part is then

vd ¼ �7:236 tan 117:13� ¼ 14:12 ð9:39Þ
where 117:13� is the angle of the 20% overshoot line.

0 0.5 1.0 1.5 2.0 2.5
Time (seconds)

0.2

0

0.4

0.6

0.8

1.0

1.2

c(
t)

3.0

FIGURE 9.51 Step response for uncompensated system of Example 9.7

TABLE 9.8 Predicted characteristics of uncompensated and compensated systems of Example 9.7

Uncompensated Compensated

Plant and compensator
K1

sðsþ 5Þðsþ 15Þ
K1

sðsþ 5Þðsþ 15Þ
Feedback 1 0:185ðsþ 5:42Þ
Dominant poles �1:809 � j3:531 �7:236 � j14:12

K1 257.8 1388

z 0.456 0.456

vn 3.97 15.87

%OS 20 20

Ts 2.21 0.55

Tp 0.89 0.22

Kv 3.44 4.18

eð1Þ (ramp) 0.29 0.24

Other poles �16:4 �5:53

Zero None None

Comments Second-order approx. OK Simulate
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Using the compensated dominant pole position of
�7:236 � j14:12, we sum the angles from the uncompensated sys-
tem’s poles and obtain �277:33�. This angle requires a compensator
zero contribution of þ97:33� to yield 180� at the design point. The
geometry shown in Figure 9.52 leads to the calculation of the
compensator’s zero location. Hence,

14:12

7:236 � zc ¼ tanð180� � 97:33�Þ ð9:40Þ

from which zc ¼ 5:42.
The root locus for the equivalent compensated system of Figure

9.49(c) is shown in Figure 9.53. The gain at the design point, which is
K1Kf from Figure 9.49(c), is found to be 256.7. Since Kf is the
reciprocal of the compensator zero, Kf ¼ 0:185. Thus, K1 ¼ 1388.

In order to evaluate the steady-state error characteristic, Kv is
found from Figure 9.49(d) to be

Kv ¼ K1

75 þK1Kf
¼ 4:18 ð9:41Þ

Predicted performance for the compensated system is shown in
Table 9.8. Notice that the higher-order pole is not far enough away
from the dominant poles and thus cannot be neglected. Further, from
Figure 9.49(d), we see that the closed-loop transfer function is

TðsÞ ¼ GðsÞ
1 þGðsÞHðsÞ ¼

K1

s3 þ 20s2 þ ð75 þK1Kf ÞsþK1
ð9:42Þ

Thus, as predicted, the open-loop zero is not a closed-loop zero, and
there is no pole-zero cancellation. Hence, the design must be checked
by simulation.

The results of the simulation are shown in Figure 9.54 and show
an over-damped response with a settling time of 0.75 second, com-
pared to the uncompensated system’s settling time of approximately

–7.236
σ

–zc

j14.12

Compensator
zero

jω

s-plane
97.33°

    = Closed-loop pole

FIGURE 9.52 Finding the compensator zero
in Example 9.7
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FIGURE 9.54 Step response for the compensated system of Example 9.7
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FIGURE 9.53 Root locus for the
compensated system of Example 9.7
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2.2 seconds. Although not meeting the design requirements, the response still
represents an improvement over the uncompensated system of Figure 9.51.
Typically, less overshoot is acceptable. The system should be redesigned for
further reduction in settling time.

You may want to do Problem 8 at the end of this chapter, where you can
repeat this example using PD cascade compensation. You will see that the
compensator zero for cascade compensation is a closed-loop zero, yielding the
possibility of pole-zero cancellation. However, PD compensation is usually noisy
and not always practical.

Approach 2
The second approach allows us to use feedback compensation to design a minor
loop’s transient response separately from the closed-loop system response. In the
case of an aircraft, the minor loop may control the position of the aerosurfaces, while
the entire closed-loop system may control the entire aircraft’s pitch angle.

We will see that the minor loop of Figure 9.45 basically represents a forward-
path transfer function whose poles can be adjusted with the minor-loop gain. These
poles then become the open-loop poles for the entire control system. In other words,
rather than reshaping the root locus with additional poles and zeros, as in cascade
compensation, we can actually change the plant’s poles through a gain adjustment.
Finally, the closed-loop poles are set by the loop gain, as in cascade compensation.

Example 9.8

Minor-Loop Feedback Compensation

PROBLEM: For the system of Figure 9.55(a), design minor-loop feedback com-
pensation, as shown in Figure 9.55(b), to yield a damping ratio of 0.8 for the minor
loop and a damping ratio of 0.6 for the closed-loop system.

s(s + 5)(s + 15)

R(s) +

–
K

+

–

C(s)1
s(s + 5)(s + 15)

(a)

(b)

R(s) + C(s)KE(s)

Kf s

–

FIGURE 9.55 a. Uncompensated system and b. feedback-compensated system for
Example 9.8
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SOLUTION: The minor loop is defined as the loop containing the plant,
1=½sðsþ 5Þðsþ 15Þ	, and the feedback compensator, Kf s. The value of Kf will be
adjusted to set the location of the minor-loop poles, and then K will be adjusted to
yield the desired closed-loop response.

The transfer function of the minor loop, GML(S), is

GMLðsÞ ¼ 1

s½s2 þ 20sþ ð75 þKf Þ	 ð9:43Þ

The poles of GML(s) can be found analytically or via the root locus. The root locus
for the minor loop, where Kf s=½sðsþ 5Þðsþ 15Þ	 is the open-loop transfer function,
is shown in Figure 9.56. Since the zero at the origin comes from the feedback
transfer function of the minor loop, this zero is not a zero of the closed-loop transfer
function of the minor loop. Hence, the pole at the origin appears to remain
stationary, and there is no pole-zero cancellation at the origin. Eq. (9.43) also
shows this phenomenon. We see a stationary pole at the origin and two complex
poles that change with gain. Notice that the compensator gain, Kf, varies the
natural frequency, vn, of the minor-loop poles as seen from Eq. (9.43). Since the
real parts of the complex poles are constant at zvn ¼ �10, the damping ratio must
also be varying to keep 2zvn ¼ 20, a constant. Drawing the z ¼ 0:8 line in Figure
9.56 yields the complex poles at �10 � j7:5. The gain, Kf, which equals 81.25, places
the minor-loop poles in a position to meet the specifications. The poles just found,
�10 � j7:5, as well as the pole at the origin (Eq. (9.43)), act as open-loop poles that
generate a root locus for variations of the gain, K.

The final root locus for the system is shown in Figure 9.57. The z ¼ 0:6
damping ratio line is drawn and searched. The closed-loop complex poles are found
to be �4:535 � j6:046, with a required gain of 624.3. A third pole is at �10:93.

–j20

–j10

–20
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j20

= 0.8
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10 20–15 –5 0

s-plane

–10 + j7.5
Kf = 81.25

 = Closed-loop pole (minor loop)
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143.13°
σ

ω

ζ

–10

FIGURE 9.56 Root locus for
minor loop of Example 9.8

Virtual Experiment 9.2
Improving Transient

Response and
Steady-State Error

Using Rate Feedback
and PD Control

Put theory into practice and
design a compensator in
LabVIEW that controls the
ball position in the Quanser
Magnetic Levitation system.
Magnetic Levitation
technology is used for modern
transportation systems that
suspend, such as the high
speed Magnetic Levitation
train.

Virtual experiments are found
on WileyPLUS.
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The results are summarized in Table 9.9. We see that the compensated system,
although having the same damping ratio as the uncompensated system, is much
faster and also has a smaller steady-state error. The results, however, are predicted
results and must be simulated to verify percent overshoot, settling time, and peak
time, since the third pole is not far enough from the dominant poles. The step
response is shown in Figure 9.58 and closely matches the predicted performance.

FIGURE 9.57 Root locus for
closed-loop system of
Example 9.8

= 0.6ζ

jω

–20 –10 10 20

–j5

0

j15

j20

–j15

–j20

– 4.535 + j6.046
K = 624.3

 = Closed-loop pole
 = Open-loop pole

s-plane

126.87°
j5

–10.93

–j10

j10

σ

TABLE 9.9 Predicted characteristics of the uncompensated and compensated systems of
Example 9.8

Uncompensated Compensated

Plant and compensator
K1

sðsþ 5Þðsþ 15Þ
K

sðs2 þ 20sþ 156:25Þ
Feedback 1 1

Dominant poles �1:997 � j2:662 �4:535 � j6:046

K 177.3 624.3

z 0.6 0.6

vn 3.328 7.558

%OS 9.48 9.48

Ts 2 0.882

Tp 1.18 0.52

Kv 2.364 3.996

eð1Þ(ramp) 0.423 0.25

Other poles �16 �10:93

Zero None None

Comments Second-order approx. OK Simulate
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Skill-Assessment Exercise 9.4

PROBLEM: For the system of Figure 9.59, design minor-loop rate feedback com-
pensation to yield a damping ratio of 0.7 for the minor loop’s dominant poles and a
damping ratio of 0.5 for the closed-loop system’s dominant poles.

ANSWER: The system is configured similar to Figure 9.55(b) with Kf ¼ 77:42 and
K ¼ 626:3.

The complete solution is at www.wiley.com/college/nise.

Our discussion of compensation methods is now complete. We studied both
cascade and feedback compensation and compared and contrasted them. We are now
ready to show how to physically realize the controllers and compensators we designed.

9.6 Physical Realization of
Compensation

In this chapter, we derived compensation to improve transient response and steady-
state error in feedback control systems. Transfer functions of compensators used in
cascade with the plant or in the feedback path were derived. These compensators
were defined by their pole-zero configurations. They were either active PI, PD, or
PID controllers or passive lag, lead, or lag-lead compensators. In this section, we
show how to implement the active controllers and the passive compensators.

0
0

0.2 0.4 0.8 1.0 1.20.6
Time (seconds)

c(
t)

0.2

0.4

0.6

0.8

1.0

1.2

FIGURE 9.58 Step response simulation for Example 9.8

–
K

C(s)+R(s)

s(s + 7)(s + 10)
1

FIGURE 9.59 System for Skill-Assessment Exercise 9.4
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Active-Circuit Realization
In Chapter 2, we derived

VoðsÞ
ViðsÞ ¼ �Z2ðsÞ

Z1ðsÞ ð9:44Þ

as the transfer function of an inverting operational amplifier whose
configuration is repeated here in Figure 9.60. By judicious choice of Z1(s)
and Z2(s), this circuit can be used as a building block to implement the
compensators and controllers, such as PID controllers, discussed in this
chapter. Table 9.10 summarizes the realization of PI, PD, and PID
controllers as well as lag, lead, and lag-lead compensators using opera-
tional amplifiers. You can verify the table by using the methods of
Chapter 2 to find the impedances.

+

–

Z1(s)

Z2(s)

I1(s)

V1(s)
Vo(s)

Vi(s)

Ia(s)

I2(s)

FIGURE 9.60 Operational amplifier
configured for transfer function realization

TABLE 9.10 Active realization of controllers and compensators, using an operational amplifier

Function Z1ðsÞ Z2ðsÞ GcðsÞ ¼ � Z2ðsÞ
Z1ðsÞ

Gain
R1 R2

�R2

R1

Integration
R C

�
1

RC
s

Differentiation

C R

�RCs

PI controller
R1 CR2

�R2

R1

sþ 1

R2C

� �

s

PD controller

C

R1

R2

�R2C sþ 1

R1C

� �

PID controller

C1

R1

C2R2

� R2

R1
þ C1

C2

� �
þ R2C1sþ

1

R1C2

s

2
664

3
775

Lag compensation

C1

R1

C2

R2
�C1

C2

sþ 1

R1C1

� �

sþ 1

R2C2

� �

where R2C2 > R1C1

Lead compensation

C1

R1

C2

R2

�C1

C2

sþ 1

R1C1

� �

sþ 1

R2C2

� �

where R1C1 > R2C2
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Other compensators can be realized by cascading compensators shown in the
table. For example, a lag-lead compensator can be formed by cascading the lag
compensator with the lead compensator, as shown in Figure 9.61. As an example, let
us implement one of the controllers we designed earlier in the chapter.

Example 9.9

Implementing a PID Controller

PROBLEM: Implement the PID controller of Example 9.5.

SOLUTION: The transfer function of the PID controller is

GcðsÞ ¼ ðsþ 55:92Þðsþ 0:5Þ
s

ð9:45Þ

which can be put in the form

GcðsÞ ¼ sþ 56:42 þ 27:96

s
ð9:46Þ

Comparing the PID controller in Table 9.10 with Eq. (9.46), we obtain the following
three relationships:

R2

R1
þ C1

C2
¼ 56:42 ð9:47Þ

R2C1 ¼ 1 ð9:48Þ
and

1

R1C2
¼ 27:96 ð9:49Þ

Since there are four unknowns and three equations, we
arbitrarily select a practical value for one of the elements. Selecting
C2 ¼ 0:1 mF, the remaining values are found to be R1 ¼ 357:65 kV,
R2 ¼ 178;891 kV, and C1 ¼ 5:59 mF.

The complete circuit is shown in Figure 9.62, where the
circuit element values have been rounded off.

+

–
vi(t)

vo(t)

R1

C1

R3

C3

R2

C2

Lag compensator
R2C2 > R1C1 Lead compensator

R3C3 > R4C4

+

–

R4

C4

FIGURE 9.61 Lag-lead compensator implemented with operational amplifiers

vi(t)

5.6 Fμ

0.1 Fμ

358 kΩ

179 kΩ

+

–
v1(t)

vo(t)

FIGURE 9.62 PID controller
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Passive-Circuit Realization
Lag, lead, and lag-lead compensators can also be implemented with passive net-
works. Table 9.11 summarizes the networks and their transfer functions. The transfer
functions can be derived with the methods of Chapter 2.

The lag-lead transfer function can be put in the following form:

GcðsÞ ¼
sþ 1

T1

� �
sþ 1

T2

� �

sþ 1

aT1

� �
sþ a

T2

� � ð9:50Þ

where a < 1. Thus, the terms with T1 form the lead compensator, and the terms with T2

form the lag compensator. Equation (9.50) shows a restriction inherent in using this
passive realization. We see that the ratio of the lead compensator zero to the lead
compensator pole must be the same as the ratio of the lag compensator pole to the lag
compensator zero. In Chapter 11 we design a lag-lead compensator with this restriction.

A lag-lead compensator without this restriction can be realized with an active
network as previously shown or with passive networks by cascading the lead and lag
networks shown in Table 9.11. Remember, though, that the two networks must be
isolated to ensure that one network does not load the other. If the networks load
each other, the transfer function will not be the product of the individual transfer
functions. A possible realization using the passive networks uses an operational
amplifier to provide isolation. The circuit is shown in Figure 9.63. Example 9.10
demonstrates the design of a passive compensator.

TABLE 9.11 Passive realization of compensators

Function Network Transfer function,
VoðsÞ
ViðsÞ

Lag compensation
vi(t)

R2

R2

C

vo(t)

+ +

– –

R2

R1 þ R2

sþ 1

R2C

sþ 1

ðR1 þ R2ÞC

Lead compensation

vi(t)

R1

R2
C vo(t)

+ +

– –

sþ 1

R1C

sþ 1

R1C
þ 1

R2C

Lag-lead compensation

vi(t)

R1

R2

C1

C2

vo(t)

+ +

– –

sþ 1

R1C1

� �
sþ 1

R2C2

� �

s2 þ 1

R1C1
þ 1

R2C2
þ 1

R2C1

� �
sþ 1

R1R2C1C2
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Example 9.10

Realizing a Lead Compensator

PROBLEM: Realize the lead compensator designed in Example 9.4 (Compensator b).

SOLUTION: The transfer function of the lead compensator is

GcðsÞ ¼ sþ 4

sþ 20:09
ð9:51Þ

Comparing the transfer function of a lead network shown in Table 9.11 with
Eq. (9.51), we obtain the following two relationships:

1

R1C
¼ 4 ð9:52Þ

and

1

R1C
þ 1

R2C
¼ 20:09 ð9:53Þ

Hence, R1C ¼ 0:25, and R2C ¼ 0:0622. Since there are three network elements and
two equations, we may select one of the element values arbitrarily. Letting
C ¼ 1 mF, then R1 ¼ 250 kV and R2 ¼ 62:2 kV.

Skill-Assessment Exercise 9.5

PROBLEM: Implement the compensators shown in a. and b. below. Choose a
passive realization if possible.

a. GcðsÞ ¼ ðsþ 0:1Þðsþ 5Þ
s

b. GcðsÞ ¼ ðsþ 0:1Þðsþ 2Þ
ðsþ 0:01Þðsþ 20Þ

ANSWERS:

a. Gc(s) is a PID controller and thus requires active realization. Use Figure 9.60
with the PID controller circuits shown in Table 9.10. One possible set of
approximate component values is

C1 ¼ 10 mF; C2 ¼ 100 mF; R1 ¼ 20 kV; R2 ¼ 100 kV

R4

R5
C2

R2

R1 R3

R3

C1

Lag Isolation
gain = –1

Lead

+

–

+

–

vo(t)vi(t)

–

+

FIGURE 9.63 Lag-lead
compensator implemented
with cascaded lag and lead
networks with isolation
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b. Gc(s) is a lag-lead compensator that can be implemented with a passive
network because the ratio of the lead pole to zero is the inverse of the ratio of
the lag pole to zero. Use the lag-lead compensator circuit shown in Table 9.11.
One possible set of approximate component values is

C1 ¼ 100 mF; C2 ¼ 900 mF; R1 ¼ 100 kV; R2 ¼ 560 V

The complete solution is at www.wiley.com.college/nise.

Case Studies

Antenna Control: Lag-Lead Compensation

For the antenna azimuth position control system case study in Chapter 8, we
obtained a 25% overshoot using a simple gain adjustment. Once this percent
overshoot was obtained, the settling time was determined. If we try to improve the
settling time by increasing the gain, the percent overshoot also increases. In this
section, we continue with the antenna azimuth position control by designing a
cascade compensator that yields 25% overshoot at a reduced settling time. Further,
we effect an improvement in the steady-state error performance of the system.

PROBLEM: Given the antenna azimuth position control system shown on the front
endpapers, Configuration 1, design cascade compensation to meet the following
requirements: (1) 25% overshoot, (2) 2-second settling time, and (3) Kv ¼ 20.

SOLUTION: For the case study in Chapter 8, a preamplifier gain of 64.21 yielded 25%
overshoot, with the dominant, second-order poles at �0:833 � j1:888. The settling
time is thus 4=zvn ¼ 4=:833 ¼ 4:8 seconds. The open-loop function for the system as
derived in the case study in Chapter 5 is GðsÞ ¼ 6:63K=½sðsþ 1:71Þðsþ 100Þ	. Hence
Kv ¼ 6:63K=ð1:71 
 100Þ ¼ 2:49. Comparing these values to this example’s problem
statement, we want to improve the settling time by a factor of 2.4, and we want
approximately an eightfold improvement in Kv.

Lead compensator design to improve transient response: First locate the
dominant second-order pole. To obtain a settling time, Ts, of 2 seconds and a
percent overshoot of 25%, the real part of the dominant second-order pole should
be at �4=Ts ¼ �2. Locating the pole on the 113:83� line (z ¼ 0:404, corresponding
to 25% overshoot) yields an imaginary part of 4.529 (see Figure 9.64).

Second, assume a lead compensator zero and find the compensator pole.
Assuming a compensator zero at �2, along with the uncompensated system’s
open-loop poles and zeros, use the root locus program in Appendix H.2 at www
.wiley.com/college/nise to find that there is an angular contribution of �120:14� at
the design point of �2 � j4:529. Therefore, the compensator’s pole must contribute
120:14� � 180� ¼ �59:86� for the design point to be on the compensated system’s
root locus. The geometry is shown in Figure 9.64. To calculate the compensator
pole, we use 4:529=ðpc � 2Þ ¼ tan 59:86� or pc ¼ 4:63.
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