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ANSWER: VLðsÞ=VðsÞ ¼ ðs2 þ 2sþ 1Þ=ðs2 þ 5sþ 2Þ 
The complete solution is at www.wiley.com/college/nise.

Skill-Assessment Exercise 2.7

PROBLEM: If Z1ðsÞ is the impedance of a 10 mF capacitor and Z2ðsÞ is the
impedance of a 100 kV resistor, find the transfer function, GðsÞ ¼ VoðsÞ=ViðsÞ,
if these components are used with (a) an inverting operational amplifier and (b) a
noninverting amplifier as shown in Figures 2.10(c) and 2.12, respectively.

ANSWER: GðsÞ ¼ �s for an inverting operational amplifier; GðsÞ ¼ sþ 1 for a
noninverting operational amplifier.

The complete solution is at www.wiley.com/college/nise.

In this section, we found transfer functions for multiple-loop and multiple-node
electrical networks, as well as operational amplifier circuits. We developed mesh and
nodal equations, noted their form, and wrote them by inspection. In the next section
we begin our work with mechanical systems. We will see that many of the concepts
applied to electrical networks can also be applied to mechanical systems via analo-
gies—from basic concepts to writing the describing equations by inspection. This
revelation will give you the confidence to move beyond this textbook and study
systems not covered here, such as hydraulic or pneumatic systems.

2.5 Translational Mechanical System
Transfer Functions

We have shown that electrical networks can be modeled by a transfer function, G(s),
that algebraically relates the Laplace transform of the output to the Laplace transform
of the input. Now we will do the same for mechanical systems. In this section we
concentrate on translational mechanical systems. In the next section we extend the
concepts to rotational mechanical systems. Notice that the end product, shown in
Figure 2.2, will be mathematically indistinguishable from an electrical network.
Hence, an electrical network can be interfaced to a mechanical system by cascading
their transfer functions, provided that one system is not loaded by the other.6

6 The concept of loading is explained further in Chapter 5.
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Mechanical systems parallel electrical networks to such an extent that there are
analogies between electrical and mechanical components and variables. Mechanical
systems, like electrical networks, have three passive, linear components. Two of
them, the spring and the mass, are energy-storage elements; one of them, the viscous
damper, dissipates energy. The two energy-storage elements are analogous to the
two electrical energy-storage elements, the inductor and capacitor. The energy
dissipator is analogous to electrical resistance. Let us take a look at these mechanical
elements, which are shown in Table 2.4. In the table, K, f v, and M are called spring
constant, coefficient of viscous friction, and mass, respectively.

We now create analogies between electrical and mechanical systems by
comparing Tables 2.3 and 2.4. Comparing the force-velocity column of Table 2.4
to the voltage-current column of Table 2.3, we see that mechanical force is analogous
to electrical voltage and mechanical velocity is analogous to electrical current.
Comparing the force-displacement column of Table 2.4 with the voltage-charge
column of Table 2.3 leads to the analogy between the mechanical displacement and
electrical charge. We also see that the spring is analogous to the capacitor, the
viscous damper is analogous to the resistor, and the mass is analogous to the
inductor. Thus, summing forces written in terms of velocity is analogous to summing
voltages written in terms of current, and the resulting mechanical differential
equations are analogous to mesh equations. If the forces are written in terms of
displacement, the resulting mechanical equations resemble, but are not analogous
to, the mesh equations. We, however, will use this model for mechanical systems so
that we can write equations directly in terms of displacement.

Another analogy can be drawn by comparing the force-velocity column of
Table 2.4 to the current-voltage column of Table 2.3 in reverse order. Here the
analogy is between force and current and between velocity and voltage. Also, the

TABLE 2.4 Force-velocity, force-displacement, and impedance translational relationships
for springs, viscous dampers, and mass

Component Force-velocity Force-displacement
Impedence

ZMðsÞ ¼ FðsÞ=XðsÞ

K

Spring
x(t)

f (t)
f ðtÞ ¼ K

R t
0 vðtÞdt f ðtÞ ¼ KxðtÞ K

fv

Viscous damper
x(t)

f (t)
f ðtÞ ¼ f vvðtÞ f ðtÞ ¼ f v

dxðtÞ
dt

f vs

Mass
x(t)

f (t)M

f ðtÞ ¼ M
dvðtÞ
dt

f ðtÞ ¼ M
d2xðtÞ
dt2

Ms2

Note: The following set of symbols and units is used throughout this book: f ðtÞ ¼ N ðnewtonsÞ,
xðtÞ ¼ m ðmetersÞ, vðtÞ ¼ m/s ðmeters/secondÞ, K ¼ N/m ðnewtons/meterÞ, f v ¼ N-s/mðnewton-seconds/
meterÞ, M ¼ kg ðkilograms ¼ newton-seconds2/meterÞ.
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spring is analogous to the inductor, the viscous damper is analogous to the resistor,
and the mass is analogous to the capacitor. Thus, summing forces written in terms of
velocity is analogous to summing currents written in terms of voltage and the
resulting mechanical differential equations are analogous to nodal equations. We
will discuss these analogies in more detail in Section 2.9.

We are now ready to find transfer functions for translational mechanical
systems. Our first example, shown in Figure 2.15(a), is similar to the simple RLC
network of Example 2.6 (see Figure 2.3). The mechanical system requires just one
differential equation, called the equation of motion, to describe it. We will begin by
assuming a positive direction of motion, for example, to the right. This assumed
positive direction of motion is similar to assuming a current direction in an electrical
loop. Using our assumed direction of positive motion, we first draw a free-body
diagram, placing on the body all forces that act on the body either in the direction of
motion or opposite to it. Next we use Newton’s law to form a differential equation of
motion by summing the forces and setting the sum equal to zero. Finally, assuming
zero initial conditions, we take the Laplace transform of the differential equation,
separate the variables, and arrive at the transfer function. An example follows.

Example 2.16

Transfer Function—One Equation of Motion

PROBLEM: Find the transfer function, XðsÞ=FðsÞ, for the system of Figure 2.15(a).

SOLUTION: Begin the solution by drawing the free-body diagram shown in Figure
2.16(a). Place on the mass all forces felt by the mass. We assume the mass is
traveling toward the right. Thus, only the applied force points to the right; all other
forces impede the motion and act to oppose it. Hence, the spring, viscous damper,
and the force due to acceleration point to the left.

We now write the differential equation of motion using Newton’s law to sum
to zero all of the forces shown on the mass in Figure 2.16(a):

M
d2xðtÞ
dt2

þ f v
dxðtÞ
dt

þKxðtÞ ¼ f ðtÞ ð2:108Þ

(a) (b)

X(s)F(s)

K

f(t)

x(t)

fv

M 1
Ms2 + fvs + K

FIGURE 2.15 a.Mass, spring,
and damper system; b. block
diagram

F(s)

(b)

fvsX(s)

Ms2X(s)

KX(s)

f(t)

(a)

fv

M

Kx(t)

dx
dt
d2x
dt2

M M

X(s)x(t)

FIGURE 2.16 a. Free-body
diagram of mass, spring, and
damper system; b. trans-
formed free-body diagram
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Taking the Laplace transform, assuming zero initial conditions,

Ms2XðsÞ þ f vsXðsÞ þKXðsÞ ¼ FðsÞ ð2:109Þ
or

ðMs2 þ f vsþKÞXðsÞ ¼ FðsÞ ð2:110Þ
Solving for the transfer function yields

GðsÞ ¼ XðsÞ
FðsÞ ¼

1

Ms2 þ f vsþK
ð2:111Þ

which is represented in Figure 2.15(b).

Now can we parallel our work with electrical networks by circumventing the
writing of differential equations and by defining impedances for mechanical
components? If so, we can apply to mechanical systems the problem-solving
techniques learned in the previous section. Taking the Laplace transform of the
force-displacement column in Table 2.4, we obtain for the spring,

FðsÞ ¼ KXðsÞ ð2:112Þ

for the viscous damper,

FðsÞ ¼ fvsXðsÞ ð2:113Þ

and for the mass,

FðsÞ ¼ Ms2XðsÞ ð2:114Þ

If we define impedance for mechanical components as

ZMðsÞ ¼ FðsÞ
XðsÞ ð2:115Þ

and apply the definition to Eqs. (2.112) through (2.114), we arrive at the impedances
of each component as summarized in Table 2.4 (Raven, 1995).7

Replacing each force in Figure 2.16(a) by its Laplace transform, which is in the
format

FðsÞ ¼ ZMðsÞXðsÞ ð2:116Þ

we obtain Figure 2.16(b), from which we could have obtained Eq. (2.109) immedi-
ately without writing the differential equation. From now on we use this approach.

7 Notice that the impedance column of Table 2.4 is not a direct analogy to the impedance column of
Table 2.3, since the denominator of Eq. (2.115) is displacement. A direct analogy could be derived by
defining mechanical impedance in terms of velocity as FðsÞ=VðsÞ. We chose Eq. (2.115) as a convenient
definition for writing the equations of motion in terms of displacement, rather than velocity. The
alternative, however, is available.
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Finally, notice that Eq. (2.110) is of the form

Sum of impedances½ �XðsÞ ¼ Sum of applied forces½ � ð2:117Þ
which is similar, but not analogous, to a mesh equation (see footnote 7).

Many mechanical systems are similar to multiple-loop and multiple-node
electrical networks, where more than one simultaneous differential equation is
required to describe the system. In mechanical systems, the number of equations of
motion required is equal to the number of linearly independent motions. Linear
independence implies that a point of motion in a system can still move if all other
points of motion are held still. Another name for the number of linearly independent
motions is the number of degrees of freedom. This discussion is not meant to imply
that these motions are not coupled to one another; in general, they are. For example,
in a two-loop electrical network, each loop current depends on the other loop
current, but if we open-circuit just one of the loops, the other current can still exist if
there is a voltage source in that loop. Similarly, in a mechanical system with two
degrees of freedom, one point of motion can be held still while the other point of
motion moves under the influence of an applied force.

In order to work such a problem, we draw the free-body diagram for each point
of motion and then use superposition. For each free-body diagram we begin by holding
all other points of motion still and finding the forces acting on the body due only to its
own motion. Then we hold the body still and activate the other points of motion one at
a time, placing on the original body the forces created by the adjacent motion.

Using Newton’s law, we sum the forces on each body and set the sum to zero.
The result is a system of simultaneous equations of motion. As Laplace transforms,
these equations are then solved for the output variable of interest in terms of the
input variable from which the transfer function is evaluated. Example 2.17 demon-
strates this problem-solving technique.

Example 2.17

Transfer Function—Two Degrees of Freedom

PROBLEM: Find the transfer function, X2ðsÞ=FðsÞ, for the system of Figure 2.17(a).

8 Friction shown here and throughout the book, unless otherwise indicated, is viscous friction. Thus, fv1

and fv2 are not Coulomb friction, but arise because of a viscous interface.

K1 K3

f(t)
fv3

fv1
fv2

M1 M2K2

x1(t) x2(t)

(a)

(fv3
s+K2)

Δ

X2(s)F(s)

(b)

FIGURE 2.17 a. Two-
degrees-of-freedom
translational
mechanical system;8

b. block diagram

Virtual Experiment 2.1
Automobile Suspension

Put theory into practice
exploring the dynamics of
another two degree of free-
dom system—an automobile
suspension system driving
over a bumpy road demon-
strated with the Quanser
Active Suspension System
modeled in LabVIEW.

Virtual experiments are found
on WileyPLUS.
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SOLUTION: The system has two degrees of freedom, since each mass can be moved
in the horizontal direction while the other is held still. Thus, two simultaneous
equations of motion will be required to describe the system. The two equations
come from free-body diagrams of each mass. Superposition is used to draw the free-
body diagrams. For example, the forces on M1 are due to (1) its own motion and
(2) the motion of M2 transmitted to M1 through the system. We will consider these
two sources separately.

If we hold M2 still and move M1 to the right, we see the forces shown in
Figure 2.18(a). If we hold M1 still and move M2 to the right, we see the forces shown
in Figure 2.18(b). The total force on M1 is the superposition, or sum, of the forces
just discussed. This result is shown in Figure 2.18(c). For M2, we proceed in a similar
fashion: First we move M2 to the right while holding M1 still; then we move M1 to
the right and hold M2 still. For each case we evaluate the forces on M2. The results
appear in Figure 2.19.

The Laplace transform of the equations of motion can now be written from
Figures 2.18(c) and 2.19(c) as

M1s
2ðfv1

 þ  fv3Þsþ ðK1 þK2Þ
� �

X1ðsÞ � ðfv3
sþK2ÞX2ðsÞ ¼ FðsÞ ð2:118aÞ

�ðfv3sþK2ÞX1ðsÞ þ M2s
2 þ ðfv2 þ fv3Þsþ ðK2 þ  K3Þ

� �
X2ðsÞ ¼ 0 ð2:118bÞ

FIGURE 2.18 a. Forces on
M1 due only to motion of M1;
b. forces on M1 due only to
motion of M2; c. all forces
on M1

K1X1(s)

fv1
sX1(s)

F(s)

M1s2X1(s)

a

fv3
sX1(s)

K2X1(s)

(b)

fv3
sX2(s)

K2X2(s)

(K1 + K2)X1(s)

F(s)

M1s2X1(s)

(fv1 
+ fv3

)sX1(s)

fv3
sX2(s)

K2X2(s)

(c)

(  )

M1 M1

M1

FIGURE 2.19 a. Forces on
M2 due only to motion of M2;
b. forces on M2 due only to
motion of M1; c. all forces
on M2
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fv2
sX2(s)

M2s2X2(s)

fv3
sX2(s)

(a)

K3X2(s)

(b)

fv3
sX1(s)

(K2 + K3)X2(s)

M2s2X2(s)

(fv2
 + fv3

)sX2(s)
fv3

sX1(s)

K2X1(s)

(c)

K2X1(s)

M2 M2

M2
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From this, the transfer function, X2ðsÞ=FðsÞ, is

X2ðsÞ
FðsÞ ¼ GðsÞ ¼ ðfv3

sþK2Þ
D

ð2:119Þ

as shown in Figure 2.17(b) where

D ¼
M1s2 þ ðfv1

þ fv3
Þsþ ðK1 þK2Þ

� � �ðfv3
sþK2Þ

�ðfv3
sþK2Þ M2s2 þ ðfv2

þ fv3
Þsþ ðK2 þK3Þ

� �
�����

�����

Notice again, in Eq. (2.118), that the form of the equations is similar to
electrical mesh equations:

Sum of

impedances

connected

to the motion

at x1

2
666664

3
777775
X1ðsÞ �

Sum of

impedances

between

x1 and x2

2
6664

3
7775 X2ðsÞ ¼

Sum of

applied forces

at x1

2
4

3
5 ð2:120aÞ

�
Sum of

impedances

between

x1 and x2

2
6664

3
7775 X1ðsÞ þ

Sum of

impedances

connected

to the motion

at x2

2
666664

3
777775
X2ðsÞ ¼

Sum of

applied forces

at x2

2
4

3
5 ð2:120bÞ

The pattern shown in Eq. (2.120) should now be familiar to us. Let us use the concept
to write the equations of motion of a three-degrees-of-freedom mechanical network
by inspection, without drawing the free-body diagram.

Example 2.18

Equations of Motion by Inspection

PROBLEM: Write, but do not solve, the equations of motion for the mechanical
network of Figure 2.20.

x2(t)

x3(t)

f(t)

x1(t)

fv1
fv2

K1 K2

fv3

M2M1

fv4
M3

FIGURE 2.20 Three-
degrees-of-freedom
translational mechanical
system
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SOLUTION: The system has three degrees of freedom, since each of the three
masses can be moved independently while the others are held still. The form of the
equations will be similar to electrical mesh equations. For M1,

Sum of

impedances

connected

to the motion

at x1

2
666664

3
777775
X1ðsÞ �

Sum of

impedances

between

x1 and x2

2
6664

3
7775 X2ðsÞ

�
Sum of

impedances

between

x1 and x3

2
6664

3
7775 X3ðsÞ ¼

Sum of

applied forces

at x1

2
4

3
5

ð2:121Þ

Similarly, for M2 and M3, respectively,

�
Sum of

impedances

between

x1 and x2

2
6664

3
7775 X1ðsÞ þ

Sum of

impedances

connected

to the motion

at x2

2
666664

3
777775
X2ðsÞ

�
Sum of

impedances

between

x2 and x3

2
6664

3
7775 X3ðsÞ ¼

Sum of

applied forces

at x2

2
4

3
5

ð2:122Þ

�
Sum of

impedances

between

x1 and x3

2
6664

3
7775 X1ðsÞ �

Sum of

impedances

between

x2 and x3

2
6664

3
7775 X2ðsÞ

þ

Sum of

impedances

connected

to the motion

at x3

2
666664

3
777775
X3ðsÞ ¼

Sum of

applied forces

at x3

2
4

3
5

ð2:123Þ

M1 has two springs, two viscous dampers, and mass associated with its motion.
There is one spring between M1 and M2 and one viscous damper between M1 and
M3. Thus, using Eq. (2.121),

M1s
2 þ ðfv1

þ fv3
Þsþ ðK1 þK2Þ

� �
X1ðsÞ �K2X2ðsÞ � fv3

sX3ðsÞ ¼ 0 ð2:124Þ

Similarly, using Eq. (2.122) for M2,

�K2X1ðsÞ þ M2s
2 þ ðfv2

þ fv4
ÞsþK2

� �
X2ðsÞ � fv4

sX3ðsÞ ¼ FðsÞ ð2:125Þ
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and using Eq. (2.123) for M3,

� fv3
sX1ðsÞ � fv4

sX2ðsÞ þ M3s
2 þ ðfv3

þ fv4
Þs� �

X3ðsÞ ¼ 0 ð2:126Þ

Equations (2.124) through (2.126) are the equations of motion. We can solve them
for any displacement, X1ðsÞ; X2ðsÞ;  or X3ðsÞ, or transfer function.

Skill-Assessment Exercise 2.8

PROBLEM: Find the transfer function, GðsÞ ¼ X2ðsÞ=FðsÞ, for the translational
mechanical system shown in Figure 2.21.

ANSWER: GðsÞ ¼ 3sþ 1

sðs3 þ 7s2 þ 5sþ 1Þ
The complete solution is at www.wiley.com/college/nise.

2.6 Rotational Mechanical System
Transfer Functions

Having covered electrical and translational mechanical systems, we now move on
to consider rotational mechanical systems. Rotational mechanical systems are
handled the same way as translational mechanical systems, except that torque
replaces force and angular displacement replaces translational displacement. The
mechanical components for rotational systems are the same as those for transla-
tional systems, except that the components undergo rotation instead of translation.
Table 2.5 shows the components along with the relationships between torque and
angular velocity, as well as angular displacement. Notice that the symbols for the

fv1
= 1 N-s/m

fv2
= 1 N-s/m fv4

= 1 N-s/m
fv3

= 1 N-s/m

K= 1 N/m

M1 = 1 kg M2 = 1 kg

x1(t)

f (t)

x2(t)

FIGURE 2.21 Translational
mechanical system for Skill-
Assessment Exercise 2.8
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