

Skill-Assessment Exercise 2.7

PROBLEM: If $Z_1(s)$ is the impedance of a 10 μ F capacitor and $Z_2(s)$ is the impedance of a 100 k Ω resistor, find the transfer function, $G(s) = V_o(s)/V_i(s)$, if these components are used with (a) an inverting operational amplifier and (b) a noninverting amplifier as shown in Figures 2.10(c) and 2.12, respectively.

ANSWER: G(s) = -s for an inverting operational amplifier; G(s) = s + 1 for a noninverting operational amplifier.

The complete solution is at www.wiley.com/college/nise.

In this section, we found transfer functions for multiple-loop and multiple-node electrical networks, as well as operational amplifier circuits. We developed mesh and nodal equations, noted their form, and wrote them by inspection. In the next section we begin our work with mechanical systems. We will see that many of the concepts applied to electrical networks can also be applied to mechanical systems via analogies—from basic concepts to writing the describing equations by inspection. This revelation will give you the confidence to move beyond this textbook and study systems not covered here, such as hydraulic or pneumatic systems.

2.5 Translational Mechanical System Transfer Functions

We have shown that electrical networks can be modeled by a transfer function, G(s), that algebraically relates the Laplace transform of the output to the Laplace transform of the input. Now we will do the same for mechanical systems. In this section we concentrate on translational mechanical systems. In the next section we extend the concepts to rotational mechanical systems. Notice that the end product, shown in Figure 2.2, will be mathematically indistinguishable from an electrical network. Hence, an electrical network can be interfaced to a mechanical system by cascading their transfer functions, provided that one system is not loaded by the other.⁶

WileyPLUS

WPCS

Control Solutions

⁶The concept of loading is explained further in Chapter 5.

Chapter 2 Modeling in the Frequency Domain

TABLE 2.4 Force-velocity, force-displacement, and impedance translational relationships for springs, viscous dampers, and mass

Component	Force-velocity	Force-displacement	Impedence $Z_M(s) = F(s)/X(s)$
$\begin{array}{c} \text{Spring} \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ $	$f(t) = K \int_0^t v(\tau) d au$	f(t) = Kx(t)	K
Viscous damper x(t) f_v	$f(t) = f_v v(t)$	$f(t) = f_v \frac{dx(t)}{dt}$	$f_{v}s$
$\begin{array}{c} \text{Mass} \\ \hline \end{array} x(t) \\ \hline Mt \end{array} \rightarrow f(t) \end{array}$	$f(t) = M \frac{d\nu(t)}{dt}$	$f(t) = M \frac{d^2 x(t)}{dt^2}$	Ms ²

Note: The following set of symbols and units is used throughout this book: f(t) = N (newtons), x(t) = m (meters), v(t) = m/s (meters/second), K = N/m (newtons/meter), $f_v = N-s/m$ (newton-seconds/meter), M = kg (kilograms = newton-seconds²/meter).

Mechanical systems parallel electrical networks to such an extent that there are analogies between electrical and mechanical components and variables. Mechanical systems, like electrical networks, have three passive, linear components. Two of them, the spring and the mass, are energy-storage elements; one of them, the viscous damper, dissipates energy. The two energy-storage elements are analogous to the two electrical energy-storage elements, the inductor and capacitor. The energy dissipator is analogous to electrical resistance. Let us take a look at these mechanical elements, which are shown in Table 2.4. In the table, K, f_v , and M are called *spring constant*, *coefficient of viscous friction*, and *mass*, respectively.

We now create analogies between electrical and mechanical systems by comparing Tables 2.3 and 2.4. Comparing the force-velocity column of Table 2.4 to the voltage-current column of Table 2.3, we see that mechanical force is analogous to electrical voltage and mechanical velocity is analogous to electrical current. Comparing the force-displacement column of Table 2.4 with the voltage-charge column of Table 2.3 leads to the analogy between the mechanical displacement and electrical charge. We also see that the spring is analogous to the capacitor, the viscous damper is analogous to the resistor, and the mass is analogous to the inductor. Thus, summing forces written in terms of velocity is analogous to summing voltages written in terms of current, and the resulting mechanical differential equations are analogous to mesh equations. If the forces are written in terms of displacement, the resulting mechanical equations resemble, but are not analogous to, the mesh equations. We, however, will use this model for mechanical systems so that we can write equations directly in terms of displacement.

Another analogy can be drawn by comparing the force-velocity column of Table 2.4 to the current-voltage column of Table 2.3 in reverse order. Here the analogy is between force and current and between velocity and voltage. Also, the

spring is analogous to the inductor, the viscous damper is analogous to the resistor, and the mass is analogous to the capacitor. Thus, summing forces written in terms of velocity is analogous to summing currents written in terms of voltage and the resulting mechanical differential equations are analogous to nodal equations. We will discuss these analogies in more detail in Section 2.9.

We are now ready to find transfer functions for translational mechanical systems. Our first example, shown in Figure 2.15(a), is similar to the simple *RLC* network of Example 2.6 (see Figure 2.3). The mechanical system requires just one differential equation, called the *equation of motion*, to describe it. We will begin by assuming a positive direction of motion, for example, to the right. This assumed positive direction of motion is similar to assuming a current direction in an electrical loop. Using our assumed direction of positive motion, we first draw a free-body diagram, placing on the body all forces that act on the body either in the direction of motion of motion by summing the forces and setting the sum equal to zero. Finally, assuming zero initial conditions, we take the Laplace transform of the differential equation, separate the variables, and arrive at the transfer function. An example follows.

PROBLEM: Find the transfer function, X(s)/F(s), for the system of Figure 2.15(*a*).

SOLUTION: Begin the solution by drawing the free-body diagram shown in Figure 2.16(a). Place on the mass all forces felt by the mass. We assume the mass is traveling toward the right. Thus, only the applied force points to the right; all other forces impede the motion and act to oppose it. Hence, the spring, viscous damper, and the force due to acceleration point to the left.

We now write the differential equation of motion using Newton's law to sum to zero all of the forces shown on the mass in Figure 2.16(a):

$$M\frac{d^{2}x(t)}{dt^{2}} + f_{v}\frac{dx(t)}{dt} + Kx(t) = f(t)$$
(2.108)

FIGURE 2.16 a. Free-body diagram of mass, spring, and damper system; **b.** transformed free-body diagram

Taking the Laplace transform, assuming zero initial conditions,

$$Ms^{2}X(s) + f_{v}sX(s) + KX(s) = F(s)$$
(2.109)

or

$$Ms^{2} + f_{v}s + K)X(s) = F(s)$$
(2.110)

Solving for the transfer function yields

$$G(s) = \frac{X(s)}{F(s)} = \frac{1}{Ms^2 + f_v s + K}$$
(2.111)

which is represented in Figure 2.15(b).

Now can we parallel our work with electrical networks by circumventing the writing of differential equations and by defining impedances for mechanical components? If so, we can apply to mechanical systems the problem-solving techniques learned in the previous section. Taking the Laplace transform of the force-displacement column in Table 2.4, we obtain for the spring,

$$F(s) = KX(s) \tag{2.112}$$

for the viscous damper,

$$F(s) = f_{\nu} s X(s) \tag{2.113}$$

and for the mass,

$$F(s) = Ms^2 X(s) \tag{2.114}$$

If we define impedance for mechanical components as

$$Z_M(s) = \frac{F(s)}{X(s)} \tag{2.115}$$

and apply the definition to Eqs. (2.112) through (2.114), we arrive at the impedances of each component as summarized in Table 2.4 (*Raven, 1995*).⁷

Replacing each force in Figure 2.16(a) by its Laplace transform, which is in the format

$$F(s) = Z_M(s)X(s) \tag{2.116}$$

we obtain Figure 2.16(b), from which we could have obtained Eq. (2.109) immediately without writing the differential equation. From now on we use this approach.

⁷ Notice that the impedance column of Table 2.4 is not a direct analogy to the impedance column of Table 2.3, since the denominator of Eq. (2.115) is displacement. A direct analogy could be derived by defining mechanical impedance in terms of velocity as F(s)/V(s). We chose Eq. (2.115) as a convenient definition for writing the equations of motion in terms of displacement, rather than velocity. The alternative, however, is available.

Finally, notice that Eq. (2.110) is of the form

[Sum of impedances]X(s) = [Sum of applied forces] (2.117)

which is similar, but not analogous, to a mesh equation (see footnote 7).

Many mechanical systems are similar to multiple-loop and multiple-node electrical networks, where more than one simultaneous differential equation is required to describe the system. In mechanical systems, the number of equations of motion required is equal to the number of *linearly independent* motions. Linear independence implies that a point of motion in a system can still move if all other points of motion are held still. Another name for the number of linearly independent motions is the number of *degrees of freedom*. This discussion is not meant to imply that these motions are not coupled to one another; in general, they are. For example, in a two-loop electrical network, each loop current depends on the other loop current, but if we open-circuit just one of the loops, the other current can still exist if there is a voltage source in that loop. Similarly, in a mechanical system with two degrees of freedom, one point of motion can be held still while the other point of motion moves under the influence of an applied force.

In order to work such a problem, we draw the free-body diagram for each point of motion and then use superposition. For each free-body diagram we begin by holding all other points of motion still and finding the forces acting on the body due only to its own motion. Then we hold the body still and activate the other points of motion one at a time, placing on the original body the forces created by the adjacent motion.

Using Newton's law, we sum the forces on each body and set the sum to zero. The result is a system of simultaneous equations of motion. As Laplace transforms, these equations are then solved for the output variable of interest in terms of the input variable from which the transfer function is evaluated. Example 2.17 demonstrates this problem-solving technique.

⁸ Friction shown here and throughout the book, unless otherwise indicated, is viscous friction. Thus, f_{v1} and $f_{\nu 2}$ are not Coulomb friction, but arise because of a viscous interface.

SOLUTION: The system has two degrees of freedom, since each mass can be moved in the horizontal direction while the other is held still. Thus, two simultaneous equations of motion will be required to describe the system. The two equations come from free-body diagrams of each mass. Superposition is used to draw the freebody diagrams. For example, the forces on M_1 are due to (1) its own motion and (2) the motion of M_2 transmitted to M_1 through the system. We will consider these two sources separately.

If we hold M_2 still and move M_1 to the right, we see the forces shown in Figure 2.18(a). If we hold M_1 still and move M_2 to the right, we see the forces shown in Figure 2.18(b). The total force on M_1 is the superposition, or sum, of the forces just discussed. This result is shown in Figure 2.18(c). For M_2 , we proceed in a similar fashion: First we move M_2 to the right while holding M_1 still; then we move M_1 to the right and hold M_2 still. For each case we evaluate the forces on M_2 . The results appear in Figure 2.19.

The Laplace transform of the equations of motion can now be written from Figures 2.18(c) and 2.19(c) as

$$[M_1s^2(f_{\nu_1} + f_{\nu_3})s + (K_1 + K_2)]X_1(s) - (f_{\nu_3}s + K_2)X_2(s) = F(s)$$
(2.118a)

$$-(f_{v_3}s + K_2)X_1(s) + [M_2s^2 + (f_{v_2} + f_{v_3})s + (K_2 + K_3)]X_2(s) = 0$$
(2.118b)

on M_1

on M_2

From this, the transfer function, $X_2(s)/F(s)$, is

$$\frac{X_2(s)}{F(s)} = G(s) = \frac{(f_{\nu_3}s + K_2)}{\Delta}$$
(2.119)

as shown in Figure 2.17(b) where

$$\Delta = \begin{vmatrix} [M_1 s^2 + (f_{\nu_1} + f_{\nu_3})s + (K_1 + K_2)] & -(f_{\nu_3} s + K_2) \\ -(f_{\nu_3} s + K_2) & [M_2 s^2 + (f_{\nu_2} + f_{\nu_3})s + (K_2 + K_3)] \end{vmatrix}$$

Notice again, in Eq. (2.118), that the form of the equations is similar to electrical mesh equations:

$$\begin{bmatrix} \text{Sum of} \\ \text{impedances} \\ \text{connected} \\ \text{to the motion} \\ \text{at } x_1 \end{bmatrix} X_1(s) - \begin{bmatrix} \text{Sum of} \\ \text{impedances} \\ \text{between} \\ x_1 \text{ and } x_2 \end{bmatrix} X_2(s) = \begin{bmatrix} \text{Sum of} \\ \text{applied forces} \\ \text{at } x_1 \end{bmatrix}$$
(2.120a)
$$- \begin{bmatrix} \text{Sum of} \\ \text{impedances} \\ \text{between} \\ x_1 \text{ and } x_2 \end{bmatrix} X_1(s) + \begin{bmatrix} \text{Sum of} \\ \text{impedances} \\ \text{connected} \\ \text{to the motion} \\ \text{at } x_2 \end{bmatrix} X_2(s) = \begin{bmatrix} \text{Sum of} \\ \text{applied forces} \\ \text{at } x_2 \end{bmatrix}$$
(2.120b)

The pattern shown in Eq. (2.120) should now be familiar to us. Let us use the concept to write the equations of motion of a three-degrees-of-freedom mechanical network by inspection, without drawing the free-body diagram.

Example 2.18

Equations of Motion by Inspection

PROBLEM: Write, but do not solve, the equations of motion for the mechanical network of Figure 2.20.

SOLUTION: The system has three degrees of freedom, since each of the three masses can be moved independently while the others are held still. The form of the equations will be similar to electrical mesh equations. For M_1 ,

$$\begin{bmatrix} \text{Sum of} \\ \text{impedances} \\ \text{connected} \\ \text{to the motion} \\ \text{at } x_1 \end{bmatrix} X_1(s) - \begin{bmatrix} \text{Sum of} \\ \text{impedances} \\ \text{between} \\ x_1 \text{ and } x_2 \end{bmatrix} X_2(s)$$

$$- \begin{bmatrix} \text{Sum of} \\ \text{impedances} \\ \text{between} \\ x_1 \text{ and } x_3 \end{bmatrix} X_3(s) = \begin{bmatrix} \text{Sum of} \\ \text{applied forces} \\ \text{at } x_1 \end{bmatrix}$$
(2.121)

Similarly, for M_2 and M_3 , respectively,

$$-\begin{bmatrix} \operatorname{Sum of} \\ \operatorname{impedances} \\ \operatorname{between} \\ x_1 \operatorname{and} x_2 \end{bmatrix} X_1(s) + \begin{bmatrix} \operatorname{Sum of} \\ \operatorname{impedances} \\ \operatorname{connected} \\ \operatorname{to the motion} \\ \operatorname{at} x_2 \end{bmatrix} X_2(s)$$

$$-\begin{bmatrix} \operatorname{Sum of} \\ \operatorname{impedances} \\ \operatorname{between} \\ x_2 \operatorname{and} x_3 \end{bmatrix} X_3(s) = \begin{bmatrix} \operatorname{Sum of} \\ \operatorname{applied forces} \\ \operatorname{at} x_2 \end{bmatrix}$$

$$-\begin{bmatrix} \operatorname{Sum of} \\ \operatorname{impedances} \\ \operatorname{between} \\ x_1 \operatorname{and} x_3 \end{bmatrix} X_1(s) - \begin{bmatrix} \operatorname{Sum of} \\ \operatorname{impedances} \\ \operatorname{between} \\ x_2 \operatorname{and} x_3 \end{bmatrix} X_2(s)$$

$$+ \begin{bmatrix} \operatorname{Sum of} \\ \operatorname{impedances} \\ \operatorname{between} \\ x_2 \operatorname{and} x_3 \end{bmatrix} X_3(s) = \begin{bmatrix} \operatorname{Sum of} \\ \operatorname{applied forces} \\ \operatorname{at} x_3 \end{bmatrix}$$

$$(2.123)$$

$$+ \begin{bmatrix} \operatorname{Sum of} \\ \operatorname{impedances} \\ \operatorname{connected} \\ \operatorname{to the motion} \\ \operatorname{at} x_3 \end{bmatrix} X_3(s) = \begin{bmatrix} \operatorname{Sum of} \\ \operatorname{applied forces} \\ \operatorname{at} x_3 \end{bmatrix}$$

 M_1 has two springs, two viscous dampers, and mass associated with its motion. There is one spring between M_1 and M_2 and one viscous damper between M_1 and M_3 . Thus, using Eq. (2.121),

$$[M_1s^2 + (f_{\nu_1} + f_{\nu_3})s + (K_1 + K_2)]X_1(s) - K_2X_2(s) - f_{\nu_3}sX_3(s) = 0$$
(2.124)

Similarly, using Eq. (2.122) for M_2 ,

$$-K_2X_1(s) + \left[M_2s^2 + (f_{\nu_2} + f_{\nu_4})s + K_2\right]X_2(s) - f_{\nu_4}sX_3(s) = F(s)$$
(2.125)

and using Eq. (2.123) for M_3 ,

$$-f_{\nu_3}sX_1(s) - f_{\nu_4}sX_2(s) + [M_3s^2 + (f_{\nu_3} + f_{\nu_4})s]X_3(s) = 0$$
(2.126)

Equations (2.124) through (2.126) are the equations of motion. We can solve them for any displacement, $X_1(s)$, $X_2(s)$, or $X_3(s)$, or transfer function.

Skill-Assessment Exercise 2.8

PROBLEM: Find the transfer function, $G(s) = X_2(s)/F(s)$, for the translational mechanical system shown in Figure 2.21.

2.6 Rotational Mechanical System Transfer Functions

Having covered electrical and translational mechanical systems, we now move on to consider rotational mechanical systems. Rotational mechanical systems are handled the same way as translational mechanical systems, except that torque replaces force and angular displacement replaces translational displacement. The mechanical components for rotational systems are the same as those for translational systems, except that the components undergo rotation instead of translation. Table 2.5 shows the components along with the relationships between torque and angular velocity, as well as angular displacement. Notice that the symbols for the