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This process is continued until the nth row has been completed. The complete array of
coefficients is triangular. Note that in developing the array an entire row may be divid-
ed or multiplied by a positive number in order to simplify the subsequent numerical
calculation without altering the stability conclusion.

Routh’s stability criterion states that the number of roots of Equation (5-61) with
positive real parts is equal to the number of changes in sign of the coefficients of the first
column of the array. It should be noted that the exact values of the terms in the first col-
umn need not be known; instead, only the signs are needed. The necessary and suffi-
cient condition that all roots of Equation (5-61) lie in the left-half s plane is that all the
coefficients of Equation (5-61) be positive and all terms in the first column of the array
have positive signs.

Let us apply Routh’s stability criterion to the following third-order polynomial:
ays® + a;s* + a,s + a3 =0

where all the coefficients are positive numbers. The array of coefficients becomes
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The condition that all roots have negative real parts is given by

a|a, > apas

Consider the following polynomial:

sP+ 2+ 35 +45+5=0

Let us follow the procedure just presented and construct the array of coefficients. (The first
two rows can be obtained directly from the given polynomial. The remaining terms are
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obtained from these. If any coefficients are missing, they may be replaced by zeros in
the array.)

st 1 3 5 st 1 3 5

53 2 4 0] s 2 4 & Thesecond row is divided
1 2 0 by2

52 1 5 52 1 5

st -6 st -3

50 5 s° 5

In this example, the number of changes in sign of the coefficients in the first column is 2. This
means that there are two roots with positive real parts. Note that the result is unchanged when the
coefficients of any row are multiplied or divided by a positive number in order to simplify the
computation.

Special Cases. If a first-column term in any row is zero, but the remaining terms
are not zero or there is no remaining term, then the zero term is replaced by a very small
positive number € and the rest of the array is evaluated. For example, consider the
following equation:

s+ 22 +s+2=0 (5-62)
The array of coefficients is
s 1 1
s 22
st 0=~ e
s° 2

If the sign of the coefficient above the zero (e€) is the same as that below it, it indicates
that there are a pair of imaginary roots. Actually, Equation (5-62) has two roots at
s = =]

If, however, the sign of the coefficient above the zero (€) is opposite that below it, it
indicates that there is one sign change. For example, for the equation

s =3s+2=(s—1)*s+2)=0

the array of coefficients is

s 1 -3
i h :
One sign change 2 Or~e )
2
st -3 - <
One sign ch :
ne sign change §0 )

There are two sign changes of the coefficients in the first column. So there are two roots
in the right-half s plane. This agrees with the correct result indicated by the factored
form of the polynomial equation.
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If all the coefficients in any derived row are zero, it indicates that there are roots of
equal magnitude lying radially opposite in the s plane—that is, two real roots with equal
magnitudes and opposite signs and/or two conjugate imaginary roots. In such a case, the
evaluation of the rest of the array can be continued by forming an auxiliary polynomi-
al with the coefficients of the last row and by using the coefficients of the derivative of
this polynomial in the next row. Such roots with equal magnitudes and lying radially op-
posite in the s plane can be found by solving the auxiliary polynomial, which is always
even. For a 2n-degree auxiliary polynomial, there are n pairs of equal and opposite roots.
For example, consider the following equation:

s° 4 25* + 245% 4+ 4857 — 255 — 50 =0

The array of coefficients is

s 1 24 =25

s* 2 48 —50 <« Auxiliary polynomial P(s)

s 0 0
The terms in the s® row are all zero. (Note that such a case occurs only in an odd-
numbered row.) The auxiliary polynomial is then formed from the coefficients of the s*
row. The auxiliary polynomial P(s) is

P(s) = 2s* + 485> — 50

which indicates that there are two pairs of roots of equal magnitude and opposite sign
(that is, two real roots with the same magnitude but opposite signs or two complex-
conjugate roots on the imaginary axis). These pairs are obtained by solving the auxiliary
polynomial equation P(s) = 0.The derivative of P(s) with respect to s is

dP(s)

ds

The terms in the s° row are replaced by the coefficients of the last equation—that is,
8 and 96.The array of coefficients then becomes
5’ 1 24 —25
st 2 48 —50
s 8 96 « Coefficients of dP (s)/ds
s? 24 —50
s
s

= 85 + 96s

! 112.7 0
0 - 50

We see that there is one change in sign in the first column of the new array. Thus, the orig-
inal equation has one root with a positive real part. By solving for roots of the auxiliary
polynomial equation,

25" + 482 — 50 = 0
we obtain

or
s = =+1, s = =%j5
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Figure 5-35
Control system.

These two pairs of roots of P(s) are a part of the roots of the original equation. As a
matter of fact, the original equation can be written in factored form as follows:

(s+D(s—D(s+j5s—=j5)(s+2)=0

Clearly, the original equation has one root with a positive real part.

Relative Stability Analysis. Routh’s stability criterion provides the answer to
the question of absolute stability. This, in many practical cases, is not sufficient. We usu-
ally require information about the relative stability of the system. A useful approach
for examining relative stability is to shift the s-plane axis and apply Routh’s stability
criterion. That is, we substitute

s=§—o (o = constant)

into the characteristic equation of the system, write the polynomial in terms of s; and
apply Routh’s stability criterion to the new polynomial in 5. The number of changes of
sign in the first column of the array developed for the polynomial in § is equal to the num-
ber of roots that are located to the right of the vertical line s = —o . Thus, this test reveals
the number of roots that lie to the right of the vertical line s = —o.

Application of Routh’s Stability Criterion to Control-System Analysis. Routh’s
stability criterion is of limited usefulness in linear control-system analysis, mainly because
it does not suggest how to improve relative stability or how to stabilize an unstable
system. It is possible, however, to determine the effects of changing one or two
parameters of a system by examining the values that cause instability. In the following,
we shall consider the problem of determining the stability range of a parameter value.

Consider the system shown in Figure 5-35. Let us determine the range of K for
stability. The closed-loop transfer function is

C(s) K
R(s) s(s>+s+1)(s+2)+K
The characteristic equation is

P+ 383+ 352+ 25+ K =0

The array of coefficients becomes

st 1 3 K
s3 3 2 0
s? I K
s! 2 - 2K
50 K
R(s) X C(s)

ss2+s+1)(s+2)
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For stability, K must be positive, and all coefficients in the first column must be positive.
Therefore,
14
—>K>0
9
When K = &, the system becomes oscillatory and, mathematically, the oscillation is
sustained at constant amplitude.
Note that the ranges of design parameters that lead to stability may be determined
by use of Routh’s stability criterion.

5-7 EFFECTS OF INTEGRAL AND DERIVATIVE CONTROL
ACTIONS ON SYSTEM PERFORMANCE

Figure 5-36

(a) Plots of e(r) and
u(t) curves showing
nonzero control
signal when the
actuating error signal
is zero (integral
control); (b) plots of
e(t) and u(r) curves
showing zero control
signal when the
actuating error signal
is zero (proportional
control).
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In this section, we shall investigate the effects of integral and derivative control actions
on the system performance. Here we shall consider only simple systems, so that the
effects of integral and derivative control actions on system performance can be clearly
seen.

Integral Control Action. In the proportional control of a plant whose transfer
function does not possess an integrator 1/s, there is a steady-state error, or offset, in the
response to a step input. Such an offset can be eliminated if the integral control action
is included in the controller.

In the integral control of a plant, the control signal—the output signal from the
controller—at any instant is the area under the actuating-error-signal curve up to that
instant. The control signal u(¢) can have a nonzero value when the actuating error signal
e(t) is zero, as shown in Figure 5-36(a). This is impossible in the case of the proportional
controller, since a nonzero control signal requires a nonzero actuating error signal.
(A nonzero actuating error signal at steady state means that there is an offset.) Figure
5-36(b) shows the curve e(¢) versus ¢ and the corresponding curve u(t) versus ¢ when the
controller is of the proportional type.

Note that integral control action, while removing offset or steady-state error, may lead
to oscillatory response of slowly decreasing amplitude or even increasing amplitude,
both of which are usually undesirable.
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Figure 5-37
Proportional control
system.

Figure 5-38
Unit-step response
and offset.

R(s) < E(s) 1 C(s)
C*g K Ts+1

\

Proportional Plant
controller

Proportional Control of Systems. We shall show that the proportional control
of a system without an integrator will result in a steady-state error with a step input. We
shall then show that such an error can be eliminated if integral control action is included
in the controller.

Consider the system shown in Figure 5-37. Let us obtain the steady-state error in the
unit-step response of the system. Define

K
Gls) = Ts +1
Since
E(s) R(s) —C(s) L C(s) 1
R(s) R(s) R(s) 1+ G(s)
the error E(s) is given by
1 1
E(s)=—————<R(s)=——R
)= 17 G BO) —— R(s)
1+
Ts +1
For the unit-step input R(s) = 1/s, we have
Ts+1 1
ES) =51+ ks
The steady-state error is
. o L I's+1 1
e = lime(r) = limsE(s) =m0 = e Sk + 1

Such a system without an integrator in the feedforward path always has a steady-state
error in the step response. Such a steady-state error is called an offset. Figure 5-38 shows
the unit-step response and the offset.

c(t)

1 '

Offset
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