and

$$
\begin{aligned}
& d_{1}=\frac{c_{1} b_{2}-b_{1} c_{2}}{c_{1}} \\
& d_{2}=\frac{c_{1} b_{3}-b_{1} c_{3}}{c_{1}}
\end{aligned}
$$

This process is continued until the nth row has been completed. The complete array of coefficients is triangular. Note that in developing the array an entire row may be divided or multiplied by a positive number in order to simplify the subsequent numerical calculation without altering the stability conclusion.

Routh's stability criterion states that the number of roots of Equation (5-61) with positive real parts is equal to the number of changes in sign of the coefficients of the first column of the array. It should be noted that the exact values of the terms in the first column need not be known; instead, only the signs are needed. The necessary and sufficient condition that all roots of Equation (5-61) lie in the left-half s plane is that all the coefficients of Equation (5-61) be positive and all terms in the first column of the array have positive signs.

EXAMPLE 5-11 Let us apply Routh's stability criterion to the following third-order polynomial:

$$
a_{0} s^{3}+a_{1} s^{2}+a_{2} s+a_{3}=0
$$

where all the coefficients are positive numbers. The array of coefficients becomes

The condition that all roots have negative real parts is given by

$$
a_{1} a_{2}>a_{0} a_{3}
$$

EXAMPLE 5-12 Consider the following polynomial:

$$
s^{4}+2 s^{3}+3 s^{2}+4 s+5=0
$$

Let us follow the procedure just presented and construct the array of coefficients. (The first two rows can be obtained directly from the given polynomial. The remaining terms are
obtained from these. If any coefficients are missing, they may be replaced by zeros in the array.)

In this example, the number of changes in sign of the coefficients in the first column is 2 . This means that there are two roots with positive real parts. Note that the result is unchanged when the coefficients of any row are multiplied or divided by a positive number in order to simplify the computation.

Special Cases. If a first-column term in any row is zero, but the remaining terms are not zero or there is no remaining term, then the zero term is replaced by a very small positive number ϵ and the rest of the array is evaluated. For example, consider the following equation:

$$
\begin{equation*}
s^{3}+2 s^{2}+s+2=0 \tag{5-62}
\end{equation*}
$$

The array of coefficients is

$$
\begin{array}{ccc}
s^{3} & 1 & 1 \\
s^{2} & 2 & 2 \\
s^{1} & 0 \approx \epsilon \\
s^{0} & 2 &
\end{array}
$$

If the sign of the coefficient above the zero (ϵ) is the same as that below it, it indicates that there are a pair of imaginary roots. Actually, Equation (5-62) has two roots at $s= \pm j$.

If, however, the sign of the coefficient above the zero (ϵ) is opposite that below it, it indicates that there is one sign change. For example, for the equation

$$
s^{3}-3 s+2=(s-1)^{2}(s+2)=0
$$

the array of coefficients is

There are two sign changes of the coefficients in the first column. So there are two roots in the right-half s plane. This agrees with the correct result indicated by the factored form of the polynomial equation.

If all the coefficients in any derived row are zero, it indicates that there are roots of equal magnitude lying radially opposite in the s plane-that is, two real roots with equal magnitudes and opposite signs and/or two conjugate imaginary roots. In such a case, the evaluation of the rest of the array can be continued by forming an auxiliary polynomial with the coefficients of the last row and by using the coefficients of the derivative of this polynomial in the next row. Such roots with equal magnitudes and lying radially opposite in the s plane can be found by solving the auxiliary polynomial, which is always even. For a $2 n$-degree auxiliary polynomial, there are n pairs of equal and opposite roots. For example, consider the following equation:

$$
s^{5}+2 s^{4}+24 s^{3}+48 s^{2}-25 s-50=0
$$

The array of coefficients is

$$
\begin{array}{llrl}
s^{5} & 1 & 24 & -25 \\
s^{4} & 2 & 48 & -50 \\
s^{3} & 0 & 0 & \leftarrow \text { Auxiliary polynomial } P(s)
\end{array}
$$

The terms in the s^{3} row are all zero. (Note that such a case occurs only in an oddnumbered row.) The auxiliary polynomial is then formed from the coefficients of the s^{4} row. The auxiliary polynomial $P(s)$ is

$$
P(s)=2 s^{4}+48 s^{2}-50
$$

which indicates that there are two pairs of roots of equal magnitude and opposite sign (that is, two real roots with the same magnitude but opposite signs or two complexconjugate roots on the imaginary axis). These pairs are obtained by solving the auxiliary polynomial equation $P(s)=0$. The derivative of $P(s)$ with respect to s is

$$
\frac{d P(s)}{d s}=8 s^{3}+96 s
$$

The terms in the s^{3} row are replaced by the coefficients of the last equation-that is, 8 and 96. The array of coefficients then becomes

s^{5}	1	24	-25	
s^{4}	2	48	-50	
s^{3}	8	96		\leftarrow Coefficients of $d P(s) / d s$
s^{2}	24	-50		
s^{1}	112.7	0		
s^{0}	-50			

We see that there is one change in sign in the first column of the new array. Thus, the original equation has one root with a positive real part. By solving for roots of the auxiliary polynomial equation,

$$
2 s^{4}+48 s^{2}-50=0
$$

we obtain

$$
s^{2}=1, \quad s^{2}=-25
$$

or

$$
s= \pm 1, \quad s= \pm j 5
$$

These two pairs of roots of $P(s)$ are a part of the roots of the original equation. As a matter of fact, the original equation can be written in factored form as follows:

$$
(s+1)(s-1)(s+j 5)(s-j 5)(s+2)=0
$$

Clearly, the original equation has one root with a positive real part.
Relative Stability Analysis. Routh's stability criterion provides the answer to the question of absolute stability. This, in many practical cases, is not sufficient. We usually require information about the relative stability of the system. A useful approach for examining relative stability is to shift the s-plane axis and apply Routh's stability criterion. That is, we substitute

$$
s=\hat{s}-\sigma \quad(\sigma=\text { constant })
$$

into the characteristic equation of the system, write the polynomial in terms of \hat{s}; and apply Routh's stability criterion to the new polynomial in \hat{s}. The number of changes of sign in the first column of the array developed for the polynomial in \hat{s} is equal to the number of roots that are located to the right of the vertical line $s=-\sigma$. Thus, this test reveals the number of roots that lie to the right of the vertical line $s=-\sigma$.

Application of Routh's Stability Criterion to Control-System Analysis. Routh's stability criterion is of limited usefulness in linear control-system analysis, mainly because it does not suggest how to improve relative stability or how to stabilize an unstable system. It is possible, however, to determine the effects of changing one or two parameters of a system by examining the values that cause instability. In the following, we shall consider the problem of determining the stability range of a parameter value.

Consider the system shown in Figure 5-35. Let us determine the range of K for stability. The closed-loop transfer function is

$$
\frac{C(s)}{R(s)}=\frac{K}{s\left(s^{2}+s+1\right)(s+2)+K}
$$

The characteristic equation is

$$
s^{4}+3 s^{3}+3 s^{2}+2 s+K=0
$$

The array of coefficients becomes

s^{4}	1	3	K
s^{3}	3	2	0
s^{2}	$\frac{7}{3}$	K	
s^{1}	$2-\frac{9}{7} K$		
s^{0}	K		

Figure 5-35
Control system.

For stability, K must be positive, and all coefficients in the first column must be positive. Therefore,

$$
\frac{14}{9}>K>0
$$

When $K=\frac{14}{9}$, the system becomes oscillatory and, mathematically, the oscillation is sustained at constant amplitude.

Note that the ranges of design parameters that lead to stability may be determined by use of Routh's stability criterion.

5-7 EFFECTS OF INTEGRAL AND DERIVATIVE CONTROL ACTIONS ON SYSTEM PERFORMANCE

In this section, we shall investigate the effects of integral and derivative control actions on the system performance. Here we shall consider only simple systems, so that the effects of integral and derivative control actions on system performance can be clearly seen.

Integral Control Action. In the proportional control of a plant whose transfer function does not possess an integrator $1 / s$, there is a steady-state error, or offset, in the response to a step input. Such an offset can be eliminated if the integral control action is included in the controller.

In the integral control of a plant, the control signal-the output signal from the controller-at any instant is the area under the actuating-error-signal curve up to that instant. The control signal $u(t)$ can have a nonzero value when the actuating error signal $e(t)$ is zero, as shown in Figure 5-36(a). This is impossible in the case of the proportional controller, since a nonzero control signal requires a nonzero actuating error signal. (A nonzero actuating error signal at steady state means that there is an offset.) Figure 5-36(b) shows the curve $e(t)$ versus t and the corresponding curve $u(t)$ versus t when the controller is of the proportional type.

Note that integral control action, while removing offset or steady-state error, may lead to oscillatory response of slowly decreasing amplitude or even increasing amplitude, both of which are usually undesirable.

Figure 5-36
(a) Plots of $e(t)$ and $u(t)$ curves showing nonzero control signal when the actuating error signal is zero (integral control); (b) plots of $e(t)$ and $u(t)$ curves showing zero control signal when the actuating error signal is zero (proportional control).

Figure 5-37
Proportional control system.

Figure 5-38
Unit-step response and offset.

Proportional Control of Systems. We shall show that the proportional control of a system without an integrator will result in a steady-state error with a step input. We shall then show that such an error can be eliminated if integral control action is included in the controller.

Consider the system shown in Figure 5-37. Let us obtain the steady-state error in the unit-step response of the system. Define

$$
G(s)=\frac{K}{T s+1}
$$

Since

$$
\frac{E(s)}{R(s)}=\frac{R(s)-C(s)}{R(s)}=1-\frac{C(s)}{R(s)}=\frac{1}{1+G(s)}
$$

the error $E(s)$ is given by

$$
E(s)=\frac{1}{1+G(s)} R(s)=\frac{1}{1+\frac{K}{T s+1}} R(s)
$$

For the unit-step input $R(s)=1 / s$, we have

$$
E(s)=\frac{T s+1}{T s+1+K} \frac{1}{s}
$$

The steady-state error is

$$
e_{\mathrm{ss}}=\lim _{t \rightarrow \infty} e(t)=\lim _{s \rightarrow 0} s E(s)=\lim _{s \rightarrow 0} \frac{T s+1}{T s+1+K}=\frac{1}{K+1}
$$

Such a system without an integrator in the feedforward path always has a steady-state error in the step response. Such a steady-state error is called an offset. Figure 5-38 shows the unit-step response and the offset.

