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7.1 Introduction

In Chapter 1, we saw that control systems analysis and design focus on three
specifications: (1) transient response, (2) stability, and (3) steady-state errors, taking
into account the robustness of the design along with economic and social considera-
tions. Elements of transient analysis were derived in Chapter 4 for first- and second-
order systems. These concepts are revisited in Chapter 8, where they are extended to
higher-order systems. Stability was covered in Chapter 6, where we saw that forced
responses were overpowered by natural responses that increase without bound if the
system is unstable. Now we are ready to examine steady-state errors. We define the
errors and derive methods of controlling them. As we progress, we find that control
system design entails trade-offs between desired transient response, steady-state
error, and the requirement that the system be stable.

Definition and Test Inputs
Steady-state error is the difference between the input and the output for a prescribed
test input as t ! 1. Test inputs used for steady-state error analysis and design are
summarized in Table 7.1.

In order to explain how these test signals are used, let us assume a position
control system, where the output position follows the input commanded position.
Step inputs represent constant position and thus are useful in determining the ability
of the control system to position itself with respect to a stationary target, such as a
satellite in geostationary orbit (see Figure 7.1). An antenna position control is an
example of a system that can be tested for accuracy using step inputs.

TABLE 7.1 Test waveforms for evaluating steady-state errors of position control systems

Waveform Name
Physical

interpretation
Time

function
Laplace
transform

r(t)

t

Step Constant position 1 1

s

r(t)

t

Ramp Constant velocity t
1

s2

r(t)

t

Parabola Constant acceleration
1

2
t2

1

s3
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Ramp inputs represent constant-velocity inputs to a position control system by
their linearly increasing amplitude. These waveforms can be used to test a system’s
ability to follow a linearly increasing input or, equivalently, to track a constant-
velocity target. For example, a position control system that tracks a satellite that
moves across the sky at a constant angular velocity, as shown in Figure 7.1, would be
tested with a ramp input to evaluate the steady-state error between the satellite’s
angular position and that of the control system.

Finally, parabolas, whose second derivatives are constant, represent constant-
acceleration inputs to position control systems and can be used to represent
accelerating targets, such as the missile in Figure 7.1, to determine the steady-state
error performance.

Application to Stable Systems
Since we are concerned with the difference between the input and the output of a
feedback control system after the steady state has been reached, our discussion is
limited to stable systems, where the natural response approaches zero as t ! 1.
Unstable systems represent loss of control in the steady state and are not acceptable
for use at all. The expressions we derive to calculate the steady-state error can be
applied erroneously to an unstable system. Thus, the engineer must check the system
for stability while performing steady-state error analysis and design. However, in
order to focus on the topic, we assume that all the systems in examples and problems
in this chapter are stable. For practice, you may want to test some of the systems for
stability.

Evaluating Steady-State Errors
Let us examine the concept of steady-state errors. In Figure 7.2(a) a step input and
two possible outputs are shown. Output 1 has zero steady-state error, and output 2
has a finite steady-state error, e2ð1Þ. A similar example is shown in Figure 7.2(b),
where a ramp input is compared with output 1, which has zero steady-state error, and
output 2, which has a finite steady-state error, e2ð1Þ, as measured vertically between
the input and output 2 after the transients have died down. For the ramp input

Tracking system

Satellite orbiting at
constant velocity

Accelerating
missile

Satellite in geostationary orbit

FIGURE 7.1 Test inputs for
steady-state error analysis and
design vary with target type
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another possibility exists. If the output’s slope is different from that of the input, then
output 3, shown in Figure 7.2(b), results. Here the steady-state error is infinite as
measured vertically between the input and output 3 after the transients have died
down, and t approaches infinity.

Let us now look at the error from the perspective of the most general block
diagram. Since the error is the difference between the input and the output of a system,
we assume a closed-loop transfer function,T(s), and form the error,E(s), by taking the
difference between the input and the output, as shown in Figure 7.3(a). Here we are
interested in the steady-state, or final, value of e(t). For unity feedback systems, E(s)
appears as shown in Figure 7.3(b). In this chapter, we study and derive expressions for
the steady-state error for unity feedback systems first and then expand to nonunity
feedback systems. Before we begin our study of steady-state errors for unity feedback
systems, let us look at the sources of the errors with which we deal.

FIGURE 7.2 Steady-state error:
a. step input; b. ramp input

Output 1

Output 2

Input

c(
t)

e2(∞)

Output 1

e2(∞)

Output 3

(a)

(b)

c(
t)

Time

Time

Output 2

Input

FIGURE 7.3 Closed-loop control
system error: a. general
representation; b. representation
for unity feedback systems

R(s)
T(s)

C(s) E(s)
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E(s) C(s)+
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(b)(a)
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Sources of Steady-State Error
Many steady-state errors in control systems arise from nonlinear sources, such as
backlash in gears or a motor that will not move unless the input voltage exceeds a
threshold. Nonlinear behavior as a source of steady-state errors, although a viable
topic for study is beyond the scope of a text on linear control systems. The steady-
state errors we study here are errors that arise from the configuration of the system
itself and the type of applied input.

For example, look at the system of Figure 7.4(a), where R(s) is the input, C(s) is
the output, and EðsÞ ¼ RðsÞ � CðsÞ is the error. Consider a step input. In the steady
state, if c(t) equals r(t), e(t) will be zero. But with a pure gain, K, the error, e(t),
cannot be zero if c(t) is to be finite and nonzero. Thus, by virtue of the configuration
of the system (a pure gain of K in the forward path), an error must exist. If we call
csteady-state the steady-state value of the output and esteady-state the steady-state value of
the error, then csteady-state ¼ Kesteady-state, or

esteady-state ¼ 1

K
csteady-state ð7:1Þ

Thus, the larger the value of K, the smaller the value of esteady-state would have to be to
yield a similar value of csteady-state. The conclusion we can draw is that with a pure gain
in the forward path, there will always be a steady-state error for a step input. This
error diminishes as the value of K increases.

If the forward-path gain is replaced by an integrator, as shown in Figure 7.4(b),
there will be zero error in the steady state for a step input. The reasoning is as
follows: As c(t) increases, e(t) will decrease, since eðtÞ ¼ rðtÞ � cðtÞ. This decrease will
continue until there is zero error, but there will still be a value for c(t) since an
integrator can have a constant output without any input. For example, a motor can
be represented simply as an integrator. A voltage applied to the motor will cause
rotation. When the applied voltage is removed, the motor will stop and remain at its
present output position. Since it does not return to its initial position, we have an
angular displacement output without an input to the motor. Therefore, a system
similar to Figure 7.4(b), which uses a motor in the forward path, can have zero
steady-state error for a step input.

We have examined two cases qualitatively to show how a system can be expected
to exhibit various steady-state error characteristics, depending upon the system
configuration. We now formalize the concepts and derive the relationships between
the steady-state errors and the system configuration generating these errors.

7.2 Steady-State Error for Unity
Feedback Systems

Steady-state error can be calculated from a system’s closed-loop transfer function,
T(s), or the open-loop transfer function, G(s), for unity feedback systems. We begin
by deriving the system’s steady-state error in terms of the closed-loop transfer

+

–

R(s) E(s) C(s)
K

+

–

R(s) E(s) C(s)K
s

(a) (b)

FIGURE 7.4 System with
a. finite steady-state error for a
step input; b. zero steady-state
error for step input
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function, T(s), in order to introduce the subject and the definitions. Next we obtain
insight into the factors affecting steady-state error by using the open-loop transfer
function, G(s), in unity feedback systems for our calculations. Later in the chapter
we generalize this discussion to nonunity feedback systems.

Steady-State Error in Terms of T(s)
Consider Figure 7.3(a). To find E(s), the error between the input, R(s), and the
output, C(s), we write

EðsÞ ¼ RðsÞ � CðsÞ ð7:2Þ
But

CðsÞ ¼ RðsÞTðsÞ ð7:3Þ
Substituting Eq. (7.3) into Eq. (7.2), simplifying, and solving for E(s) yields

EðsÞ ¼ RðsÞ½1 � TðsÞ� ð7:4Þ

Although Eq. (7.4) allows us to solve for e(t) at any time, t, we are interested in the
final value of the error, eð1Þ. Applying the final value theorem,1 which allows us to
use the final value of e(t) without taking the inverse Laplace transform of E(s), and
then letting t approach infinity, we obtain

eð1Þ ¼ lim
t!1 eðtÞ ¼ lim

s!0
sEðsÞ ð7:5Þ2

Substituting Eq. (7.4) into Eq. (7.5) yields

eð1Þ ¼ lim
s!1 sRðsÞ½1 � TðsÞ� ð7:6Þ

Let us look at an example.

1 The final value theorem is derived from the Laplace transform of the derivative. Thus,

L½ _f ðtÞ� ¼
Z 1

0�
_f ðtÞestdt ¼ sFðsÞ � f ð0�Þ

As s ! 0;

Z 1

0�
_f ðtÞdt ¼ f ð1Þ � f ð0�Þ ¼ lim

s!0
sFðsÞ � f ð0�Þ

or

f ð1Þ ¼ lim
s!0

sFðsÞ

For finite steady-state errors, the final value theorem is valid only if F(s) has poles only in the left half-
plane and, at most, one pole at the origin. However, correct results that yield steady-state errors that are
infinite can be obtained if F(s) has more than one pole at the origin (see D’Azzo andHoupis, 1988). If F(s)
has poles in the right half-plane or poles on the imaginary axis other than at the origin, the final value
theorem is invalid.
2 Valid only if (1)E(s) has poles only in the left half-plane and at the origin, and (2) the closed-loop transfer
function, T(s), is stable. Notice that by using Eq. (7.5), numerical results can be obtained for unstable
systems. These results, however, are meaningless.
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Example 7.1

Steady-State Error in Terms of T(s)

PROBLEM: Find the steady-state error for the system of Figure 7.3(a) if TðsÞ ¼
5=ðs2 þ 7sþ 10Þ and the input is a unit step.

SOLUTION: From the problem statement, RðsÞ ¼ 1=s and TðsÞ ¼ 5=ðs2 þ 7sþ 10Þ.
Substituting into Eq. (7.4) yields

EðsÞ ¼ s2 þ 7sþ 5

sðs2 þ 7sþ 10Þ ð7:7Þ

Since T(s) is stable and, subsequently, E(s) does not have right–half-plane poles or
jv poles other than at the origin, we can apply the final value theorem. Substituting
Eq. (7.7) into Eq. (7.5) gives eð1Þ ¼ 1=2.

Steady-State Error in Terms of G(s)
Many times we have the system configured as a unity feedback system with a
forward transfer function, G(s). Although we can find the closed-loop transfer
function, T(s), and then proceed as in the previous subsection, we find more insight
for analysis and design by expressing the steady-state error in terms of G(s) rather
than T(s).

Consider the feedback control system shown in Figure 7.3(b). Since the
feedback, H(s), equals 1, the system has unity feedback. The implication is that
E(s) is actually the error between the input, R(s), and the output, C(s). Thus, if we
solve for E(s), we will have an expression for the error. We will then apply the final
value theorem, Item 11 in Table 2.2, to evaluate the steady-state error.

Writing E(s) from Figure 7.3(b), we obtain

EðsÞ ¼ RðsÞ � CðsÞ ð7:8Þ
But

CðsÞ ¼ EðsÞGðsÞ ð7:9Þ
Finally, substituting Eq. (7.9) into Eq. (7.8) and solving for E(s) yields

EðsÞ ¼ RðsÞ
1 þGðsÞ ð7:10Þ

We now apply the final value theorem, Eq. (7.5). At this point in a numerical
calculation, we must check to see whether the closed-loop system is stable, using, for
example, the Routh-Hurwitz criterion. For now, though, assume that the closed-loop
system is stable and substitute Eq. (7.10) into Eq. (7.5), obtaining

eð1Þ ¼ lim
s!0

sRðsÞ
1 þGðsÞ ð7:11Þ

Equation (7.11) allows us to calculate the steady-state error, eð1Þ, given the
input, R(s), and the system, G(s). We now substitute several inputs for R(s) and then
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draw conclusions about the relationships that exist between the open-loop system,
G(s), and the nature of the steady-state error, eð1Þ.

The three test signals we use to establish specifications for a control system’s
steady-state error characteristics are shown in Table 7.1. Let us take each input and
evaluate its effect on the steady-state error by using Eq. (7.11).

Step Input. Using Eq. (7.11) with RðsÞ ¼ 1=s, we find

eð1Þ ¼ estepð1Þ ¼ lim
s!0

s 1=sð Þ
1 þGðsÞ ¼

1

1 þ lim
s!0

GðsÞ ð7:12Þ

The term

lim
s!0

GðsÞ

is the dc gain of the forward transfer function, since s, the frequency variable, is
approaching zero. In order to have zero steady-state error,

lim
s!0

GðsÞ ¼ 1 ð7:13Þ

Hence, to satisfy Eq. (7.13), G(s) must take on the following form:

GðsÞ � ðsþ z1Þðsþ z2Þ � � �
snðsþ p1Þðsþ p2Þ � � �

ð7:14Þ

and for the limit to be infinite, the denominator must be equal to zero as s goes to
zero. Thus, n � 1; that is, at least one pole must be at the origin. Since division by s in
the frequency domain is integration in the time domain (see Table 2.2, Item 10), we
are also saying that at least one pure integration must be present in the forward path.
The steady-state response for this case of zero steady-state error is similar to that
shown in Figure 7.2(a), output 1.

If there are no integrations, then n ¼ 0. Using Eq. (7.14), we have

lim
s!0

GðsÞ ¼ z1z2 � � �
p1p2 � � �

ð7:15Þ

which is finite and yields a finite error from Eq. (7.12). Figure 7.2(a), output 2, is an
example of this case of finite steady-state error.

In summary, for a step input to a unity feedback system, the steady-state error
will be zero if there is at least one pure integration in the forward path. If there are no
integrations, then there will be a nonzero finite error. This result is comparable to our
qualitative discussion in Section 7.1, where we found that a pure gain yields a
constant steady-state error for a step input, but an integrator yields zero error for the
same type of input. We now repeat the development for a ramp input.

Ramp Input. Using Eq. (7.11) with, RðsÞ ¼ 1=s2, we obtain

eð1Þ ¼ erampð1Þ ¼ lim
s!0

s 1=s2
� �

1 þGðsÞ ¼ lim
s!0

1

sþ sGðsÞ ¼
1

lim
s!0

sGðsÞ ð7:16Þ
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To have zero steady-state error for a ramp input, we must have

lim
s!0

sGðsÞ ¼ 1 ð7:17Þ

To satisfy Eq. (7.17), G(s) must take the same form as Eq. (7.14), except that n � 2. In
other words, there must be at least two integrations in the forward path. An example of
zero steady-state error for a ramp input is shown in Figure 7.2(b), output 1.

If only one integration exists in the forward path, then, assuming Eq. (7.14),

lim
s!0

sG sð Þ ¼ z1z2 � � �
p1p2 � � �

ð7:18Þ

which is finite rather than infinite. Using Eq. (7.16), we find that this configuration
leads to a constant error, as shown in Figure 7.2(b), output 2.

If there are no integrations in the forward path, then

lim
s!0

sGðsÞ ¼ 0 ð7:19Þ

and the steady-state error would be infinite and lead to diverging ramps, as shown in
Figure 7.2(b), output 3. Finally, we repeat the development for a parabolic input.

Parabolic Input. Using Eq. (7.11) with RðsÞ ¼ 1=s3, we obtain

eð1Þ ¼ eparabolað1Þ ¼ lim
s!0

s 1=s3
� �

1 þGðsÞ ¼ lim
s!0

1

s2 þ s2GðsÞ ¼
1

lim
s!0

s2GðsÞ ð7:20Þ

In order to have zero steady-state error for a parabolic input, we must have

lim
s!0

s2GðsÞ ¼ 1 ð7:21Þ

To satisfy Eq. (7.21), G(s) must take on the same form as Eq. (7.14), except that
n � 3. In other words, there must be at least three integrations in the forward path.

If there are only two integrations in the forward path, then

lim
s!0

s2G sð Þ ¼ z1z2 � � �
p1p2 � � �

ð7:22Þ

is finite rather than infinite. Using Eq. (7.20), we find that this configuration leads to
a constant error.

If there is only one or less integration in the forward path, then

lim
s!0

s2GðsÞ ¼ 0 ð7:23Þ

and the steady-state error is infinite. Two examples demonstrate these concepts.

Example 7.2

Steady-State Errors for Systems with No Integrations

PROBLEM: Find the steady-state errors for inputs of 5u(t), 5tu(t), and 5t2u(t) to the
system shown in Figure 7.5. The function u(t) is the unit step.
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SOLUTION: First we verify that the closed-loop system is indeed
stable. For this example we leave out the details. Next, for the input
5u(t), whose Laplace transform is 5=s, the steady-state error will be
five times as large as that given by Eq. (7.12), or

e 1ð Þ ¼ estepð1Þ ¼ 5

1 þ lim
s!0

GðsÞ ¼
5

1 þ 20
¼ 5

21
ð7:24Þ

which implies a response similar to output 2 of Figure 7.2(a).
For the input 5tu(t), whose Laplace transform is 5=s2, the steady-state error

will be five times as large as that given by Eq. (7.16), or

eð1Þ ¼ erampð1Þ ¼ 5

lim
s!0

sGðsÞ ¼
5

0
¼ 1 ð7:25Þ

which implies a response similar to output 3 of Figure 7.2(b).
For the input 5t2u(t), whose Laplace transform is 10=s3, the steady-state error

will be 10 times as large as that given by Eq. (7.20), or

eð1Þ ¼ eparabolað1Þ ¼ 10

lim
s!0

s2GðsÞ ¼
10

0
¼ 1 ð7:26Þ

Example 7.3

Steady-State Errors for Systems with One Integration

PROBLEM: Find the steady-state errors for inputs of 5u(t),
5tu(t), and 5t2u(t) to the system shown in Figure 7.6. The
function u(t) is the unit step.

SOLUTION: First verify that the closed-loop system is in-
deed stable. For this example we leave out the details. Next
note that since there is an integration in the forward path, the
steady-state errors for some of the input waveforms will be

less than those found in Example 7.2. For the input 5u(t), whose Laplace transform is
5=s, the steady-state error will be five times as large as that given by Eq. (7.12), or

eð1Þ ¼ estepð1Þ ¼ 5

1 þ lim
s!0

GðsÞ ¼
5

1 ¼ 0 ð7:27Þ

which implies a response similar to output 1 of Figure 7.2(a). Notice that the
integration in the forward path yields zero error for a step input, rather than the
finite error found in Example 7.2.

For the input 5tu(t), whose Laplace transform is 5=s2, the steady-state error
will be five times as large as that given by Eq. (7.16), or

eð1Þ ¼ erampð1Þ ¼ 5

lim
s!0

sGðsÞ ¼
5

100
¼ 1

20
ð7:28Þ

+

–

R(s) C(s)120(s + 2)

(s + 3)(s + 4)

E(s)

FIGURE 7.5 Feedback control system for
Example 7.2

+

–

R(s) C(s)100(s + 2)(s + 6)

s(s + 3)(s + 4)

E(s)

FIGURE 7.6 Feedback control system for Example 7.3
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which implies a response similar to output 2 of Figure 7.2(b). Notice that the
integration in the forward path yields a finite error for a ramp input, rather than
the infinite error found in Example 7.2.

For the input, 5t2u(t), whose Laplace transform is 10=s3, the steady-state error
will be 10 times as large as that given by Eq. (7.20), or

eð1Þ ¼ eparabolað1Þ ¼ 10

lim
s!0

s2GðsÞ ¼
10

0
¼ 1 ð7:29Þ

Notice that the integration in the forward path does not yield any improvement in
steady-state error over that found in Example 7.2 for a parabolic input.

Skill-Assessment Exercise 7.1

PROBLEM: A unity feedback system has the following forward transfer function:

G sð Þ ¼ 10ðsþ 20Þðsþ 30Þ
sðsþ 25Þðsþ 35Þ

a. Find the steady-state error for the following inputs: 15u(t), 15tu(t), and 15t2u(t).

b. Repeat for

G sð Þ ¼ 10ðsþ 20Þðsþ 30Þ
s2ðsþ 25Þðsþ 35Þðsþ 50Þ

ANSWERS:

a. The closed-loop system is stable. For 15u(t), estepð1Þ ¼ 0; for 15tu(t),
erampð1Þ ¼ 2:1875; for 15(t2)u(t), eparabolað1Þ ¼ 1:

b. The closed-loop system is unstable. Calculations cannot be made.

The complete solution is at www.wiley.com/college/nise.

7.3 Static Error Constants and
System Type

We continue our focus on unity negative feedback systems and define parameters
that we can use as steady-state error performance specifications, just as we defined
damping ratio, natural frequency, settling time, percent overshoot, and so on as
performance specifications for the transient response. These steady-state error
performance specifications are called static error constants. Let us see how they
are defined, how to calculate them, and, in the next section, how to use them for
design.

7.3 Static Error Constants and System Type 349
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Static Error Constants
In the previous section we derived the following relationships for steady-state error.
For a step input, u(t),

eð1Þ ¼ estepð1Þ ¼ 1

1 þ lim
s!0

GðsÞ ð7:30Þ

For a ramp input, tu(t),

eð1Þ ¼ erampð1Þ ¼ 1

lim
s!0

sGðsÞ ð7:31Þ

For a parabolic input,
1

2
t2uðtÞ.

eð1Þ ¼ eparabolað1Þ ¼ 1

lim
s!0

s2GðsÞ ð7:32Þ

The three terms in the denominator that are taken to the limit determine the
steady-state error. We call these limits static error constants. Individually, their names
are
position constant, Kp, where

Kp ¼ lim
s!0

GðsÞ ð7:33Þ

velocity constant, Kv, where

Kv ¼ lim
s!0

sGðsÞ ð7:34Þ

acceleration constant, Ka, where

Ka ¼ lim
s!0

s2GðsÞ ð7:35Þ

As we have seen, these quantities, depending upon the form of G(s), can
assume values of zero, finite constant, or infinity. Since the static error constant
appears in the denominator of the steady-state error. Eqs. (7.30) through (7.32), the
value of the steady-state error decreases as the static error constant increases.

In Section 7.2, we evaluated the steady-state error by using the final value
theorem. An alternate method makes use of the static error constants. A few
examples follow.

Example 7.4

Steady-State Error via Static Error Constants

PROBLEM: For each system of Figure 7.7, evaluate the static error constants and
find the expected error for the standard step, ramp, and parabolic inputs.
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SOLUTION: First verify that all closed-loop systems shown are indeed stable. For
this example we leave out the details. Next, for Figure 7.7(a),

Kp ¼ lim
s!0

G sð Þ ¼ 500 � 2 � 5

8 � 10 � 12
¼ 5:208 ð7:36Þ

Kv ¼ lim
s!0

sGðsÞ ¼ 0 ð7:37Þ

Ka ¼ lim
s!0

s2GðsÞ ¼ 0 ð7:38Þ

Thus, for a step input,

eð1Þ ¼ 1

1 þKp
¼ 0:161 ð7:39Þ

For a ramp input,

eð1Þ ¼ 1

Kv
¼ 1 ð7:40Þ

For a parabolic input,

eð1Þ ¼ 1

Ka
¼ 1 ð7:41Þ

Now, for Figure 7.7(b),

Kp ¼ lim
s!0

GðsÞ ¼ 1 ð7:42Þ

Kv ¼ lim
s!0

sG sð Þ ¼ 500 � 2 � 5 � 6

8 � 10 � 12
¼ 31:25 ð7:43Þ

+

–

R(s) C(s)500(s + 2)(s + 5)

(s + 8)(s + 10)(s + 12)

(a)

+

–

R(s) C(s)500(s + 2)(s + 5)(s + 6)

s(s + 8)(s + 10)(s + 12)

(b)

+

–

R(s) C(s)500(s + 2)(s + 4)(s + 5)(s + 6)(s + 7)

s2(s + 8)(s + 10)(s + 12)

(c)

E(s)

E(s)

E(s)

FIGURE 7.7 Feedback control systems for Example 7.4
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and

Ka ¼ lim
s!0

s2GðsÞ ¼ 0 ð7:44Þ

Thus, for a step input,

eð1Þ ¼ 1

1 þKp
¼ 0 ð7:45Þ

For a ramp input,

eð1Þ ¼ 1

Kv
¼ 1

31:25
¼ 0:032 ð7:46Þ

For a parabolic input,

eð1Þ ¼ 1

Ka
¼ 1 ð7:47Þ

Finally, for Figure 7.7(c),

Kp ¼ lim
s!0

GðsÞ ¼ 1 ð7:48Þ

Kv ¼ lim
s!0

sGðsÞ ¼ 1 ð7:49Þ

and

Ka ¼ lim
s!0

s2G sð Þ ¼ 500 � 2 � 4 � 5 � 6 � 7

8 � 10 � 12
¼ 875 ð7:50Þ

Thus, for a step input,

eð1Þ ¼ 1

1 þKp
¼ 0 ð7:51Þ

For a ramp input,

eð1Þ ¼ 1

Kv
¼ 0 ð7:52Þ

For a parabolic input,

eð1Þ ¼ 1

Ka
¼ 1

875
¼ 1:14 � 10�3 ð7:53Þ

Students who are using MATLAB should now run ch7p1 in Appendix B.
You will learn how to test the system for stability, evaluate
static error constants, and calculate steady-state error using
MATLAB. This exercise applies MATLAB to solve Example 7.4 with
System (b).

System Type
Let us continue to focus on a unity negative feedback system. The values of the static
error constants, again, depend upon the form of G(s), especially the number of pure
integrations in the forward path. Since steady-state errors are dependent upon the
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number of integrations in the forward path, we give a name to this
system attribute. Given the system in Figure 7.8, we define system
type to be the value of n in the denominator or, equivalently, the
number of pure integrations in the forward path. Therefore, a
system with n ¼ 0 is a Type 0 system. If n ¼ 1 or n ¼ 2, the
corresponding system is a Type 1 or Type 2 system, respectively.

Table 7.2 ties together the concepts of steady-state error,
static error constants, and system type. The table shows the static error constants and
the steady-state errors as functions of input waveform and system type.

Skill-Assessment Exercise 7.2

PROBLEM: A unity feedback system has the following forward transfer function:

G sð Þ ¼ 1000ðsþ 8Þ
ðsþ 7Þðsþ 9Þ

a. Evaluate system type, Kp, Kv, and Ka.

b. Use your answers to a. to find the steady-state errors for the standard step,
ramp, and parabolic inputs.

ANSWERS:

a. The closed-loop system is stable. System type¼Type 0. Kp ¼ 127, Kv ¼ 0,
and Ka ¼ 0.

b. estepð1Þ ¼ 7:8 � 10�3; erampð1Þ ¼ 1; and eparabolað1Þ ¼ 1
The complete solution is at www.wiley.com/college/nise.

In this section, we defined steady-state errors, static error constants, and system
type. Now the specifications for a control system’s steady-state errors will be
formulated, followed by some examples.

7.4 Steady-State Error Specifications

Static error constants can be used to specify the steady-state error characteristics of
control systems, such as that shown in Figure 7.9. Just as damping ratio, z, settling
time, Ts, peak time, Tp, and percent overshoot, %OS, are used as specifications for a

+

–

R(s) C(s)K(s + z1)(s + z2) ...

sn(s + p1)(s + p2) ...

E(s)

FIGURE 7.8 Feedback control system for
defining system type

TABLE 7.2 Relationships between input, system type, static error constants, and steady-state errors

Type 0 Type 1 Type 2

Input
Steady-state
error formula

Static error
constant Error

Static error
constant Error

Static error
constant Error

Step, u(t)
1

1 þKp
Kp ¼ Constant

1

1 þKp
Kp ¼ 1 0 Kp ¼ 1 0

Ramp, tu(t)
1

Kv
Kv ¼ 0 1 Kv ¼ Constant

1

Kv
Kv ¼ 1 0

Parabola,
1

2
t2u tð Þ 1

Ka
Ka ¼ 0 1 Ka ¼ 0 1 Ka ¼ Constant

1

Ka

TryIt 7.1

Use MATLAB, the Control
System Toolbox, and the fol-
lowing statements to find Kp,
estepð1Þ, and the closed-loop
poles to check for stability for
the system of Skill-Assessment
Exercise 7.2.

numg=1000*[1 8];
deng=poly([-7 -9]);
G=tf(numg,deng);
Kp=dcgain(G)
estep=1/(1+Kp)
T=feedback(G,1);
poles=pole(T)
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control system’s transient response, so the position constant, Kp, velocity constant,
Kv, and acceleration constant, Ka, can be used as specifications for a control system’s
steady-state errors. We will soon see that a wealth of information is contained within
the specification of a static error constant.

For example, if a control system has the specification Kv ¼ 1000, we can draw
several conclusions:

1. The system is stable.

2. The system is of Type 1, since only Type 1 systems haveKv’s that are finite constants.
Recall that Kv ¼ 0 for Type 0 systems, whereas Kv ¼ 1 for Type 2 systems.

3. A ramp input is the test signal. Since Kv is specified as a finite constant, and the
steady-state error for a ramp input is inversely proportional to Kv, we know the
test input is a ramp.

4. The steady-state error between the input ramp and the output ramp is 1=Kv per
unit of input slope.

Let us look at two examples that demonstrate analysis and design using static
error constants.

Example 7.5

Interpreting the Steady-State Error Specification

PROBLEM: What information is contained in the specification Kp ¼ 1000?

SOLUTION: The system is stable. The system is Type 0, since only a Type 0 system
has a finite Kp. Type 1 and Type 2 systems have Kp ¼ 1. The input test signal is a
step, since Kp is specified. Finally, the error per unit step is

eð1Þ ¼ 1

1 þKp
¼ 1

1 þ 1000
¼ 1

1001
ð7:54Þ

FIGURE 7.9 A robot used in the
manufacturing of semiconductor
random-access memories
(RAMs) similar to those in
personal computers. Steady-state
error is an important design
consideration for assembly-line
robots.
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Example 7.6

Gain Design to Meet a Steady-State Error Specification

PROBLEM: Given the control system in Figure 7.10, find the
value of K so that there is 10% error in the steady state.

SOLUTION: Since the system is Type 1, the error stated in the
problem must apply to a ramp input; only a ramp yields a finite
error in a Type 1 system. Thus,

eð1Þ ¼ 1

Kv
¼ 0:1 ð7:55Þ

Therefore,

Kv ¼ 10 ¼ lim
s!0

sG sð Þ ¼ K � 5

6 � 7 � 8
ð7:56Þ

which yields

K ¼ 672 ð7:57Þ
Applying the Routh-Hurwitz criterion, we see that the system is stable at this gain.

Although this gain meets the criteria for steady-state error and stability, it
may not yield a desirable transient response. In Chapter 9 we will design feedback
control systems to meet all three specifications.

Students who are using MATLAB should now run ch7 p2 in Appendix B.
You will learn how to find the gain to meet a steady-state error
specification using MATLAB. This exercise solves Example 7.6
using MATLAB.

Skill-Assessment Exercise 7.3

PROBLEM: A unity feedback system has the following forward
transfer function:

GðsÞ ¼ Kðsþ 12Þ
ðsþ 14Þðsþ 18Þ

Find the value of K to yield a 10% error in the steady state.

ANSWER: K ¼ 189

The complete solution is at www.wiley.com/college/nise.

+

–

R(s) C(s)K(s + 5)

s(s + 6)(s + 7)(s + 8)

E(s)

FIGURE 7.10 Feedback control system for
Example 7.6

TryIt 7.2

Use MATLAB, the Control
System Toolbox, and the
following statements to solve
Skill-Assessment Exercise 7.3
and check the resulting
system for stability.

numg=[l 12];
deng=poly([-14 -18]);
G=tf(numg,deng);
Kpdk=dcgain(G);
estep=0.1;
K=(l/estep-1)/Kpdk
T=feedback(G,1);
poles=pole(T)
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This example and exercise complete our discussion of unity feedback systems. In
the remaining sections, we will deal with the steady-state errors for disturbances and
the steady-state errors for feedback control systems in which the feedback is not unity.

7.5 Steady-State Error for Disturbances

Feedback control systems are used to compensate for disturbances or unwanted
inputs that enter a system. The advantage of using feedback is that regardless of
these disturbances, the system can be designed to follow the input with small or zero

error, as we now demonstrate. Figure 7.11 shows a feedback
control system with a disturbance, D(s), injected between the
controller and the plant. We now re-derive the expression for
steady-state error with the disturbance included.

The transform of the output is given by

CðsÞ ¼ EðsÞG1ðsÞG2ðsÞ þDðsÞG2ðsÞ ð7:58Þ
But

CðsÞ ¼ RðsÞ � EðsÞ ð7:59Þ
Substituting Eq. (7.59) into Eq. (7.58) and solving for E(s), we obtain

E sð Þ ¼ 1

1 þG1ðsÞG2ðsÞR sð Þ � G2ðsÞ
1 þG1ðsÞG2ðsÞD sð Þ ð7:60Þ

where we can think of 1=½1 þG1ðsÞG2ðsÞ� as a transfer function relating E(s) to R(s)
and �G2ðsÞ=½1 þG1ðsÞG2ðsÞ� as a transfer function relating E(s) to D(s).

To find the steady-state value of the error, we apply the final value theorem3 to
Eq. (7.60) and obtain

eð1Þ ¼ lim
s!0

sEðsÞ ¼ lim
s!0

s

1 þG1ðsÞG2ðsÞRðsÞ � lim
s!0

sG2ðsÞ
1 þG1ðsÞG2ðsÞDðsÞ

¼ eRð1Þ þ eDð1Þ
ð7:61Þ

where

eRð1Þ ¼ lim
s!0

s

1 þG1ðsÞG2ðsÞR sð Þ

and

eD 1ð Þ ¼ � lim
s!0

sG2ðsÞ
1 þG1ðsÞG2ðsÞD sð Þ

The first term, eRð1Þ, is the steady-state error due to R(s), which we have already
obtained. The second term, eDð1Þ, is the steady-state error due to the disturbance.
Let us explore the conditions on eDð1Þ that must exist to reduce the error due to the
disturbance.

At this point, we must make some assumptions about D(s), the controller, and
the plant. First we assume a step disturbance, DðsÞ ¼ 1=s. Substituting this value into

+

–

R(s) C(s)
G1(s)

E(s)

Controller

+
+

Plant

D(s)

G2(s)

FIGURE 7.11 Feedback control system showing
disturbance

3 Remember that the final value theorem can be applied only if the system is stable, with the roots of
½1 þG1ðsÞG2ðsÞ� in the left–half–plane.
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