7.1 Introduction

In Chapter 1, we saw that control systems analysis and design focus on three specifications: (1) transient response, (2) stability, and (3) steady-state errors, taking into account the robustness of the design along with economic and social considerations. Elements of transient analysis were derived in Chapter 4 for first- and second-order systems. These concepts are revisited in Chapter 8, where they are extended to higher-order systems. Stability was covered in Chapter 6, where we saw that forced responses were overpowered by natural responses that increase without bound if the system is unstable. Now we are ready to examine steady-state errors. We define the errors and derive methods of controlling them. As we progress, we find that control system design entails trade-offs between desired transient response, steady-state error, and the requirement that the system be stable.

Definition and Test Inputs

Steady-state error is the difference between the input and the output for a prescribed test input as $t \to \infty$. Test inputs used for steady-state error analysis and design are summarized in Table 7.1.

In order to explain how these test signals are used, let us assume a position control system, where the output position follows the input commanded position. Step inputs represent constant position and thus are useful in determining the ability of the control system to position itself with respect to a stationary target, such as a satellite in geostationary orbit (see Figure 7.1). An antenna position control is an example of a system that can be tested for accuracy using step inputs.

Apago PDF Enhancer

TABLE 7.1 Test waveforms for evaluating steady-state errors of position control systems

<table>
<thead>
<tr>
<th>Waveform</th>
<th>Name</th>
<th>Physical interpretation</th>
<th>Time function</th>
<th>Laplace transform</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r(t)$</td>
<td>Step</td>
<td>Constant position</td>
<td>1</td>
<td>$\frac{1}{s}$</td>
</tr>
<tr>
<td>$r(t)$</td>
<td>Ramp</td>
<td>Constant velocity</td>
<td>t</td>
<td>$\frac{1}{s^2}$</td>
</tr>
<tr>
<td>$r(t)$</td>
<td>Parabola</td>
<td>Constant acceleration</td>
<td>$\frac{1}{2}t^2$</td>
<td>$\frac{1}{s^3}$</td>
</tr>
</tbody>
</table>
Ramp inputs represent constant-velocity inputs to a position control system by their linearly increasing amplitude. These waveforms can be used to test a system’s ability to follow a linearly increasing input or, equivalently, to track a constant-velocity target. For example, a position control system that tracks a satellite that moves across the sky at a constant angular velocity, as shown in Figure 7.1, would be tested with a ramp input to evaluate the steady-state error between the satellite’s angular position and that of the control system.

Finally, parabolas, whose second derivatives are constant, represent constant-acceleration inputs to position control systems and can be used to represent accelerating targets, such as the missile in Figure 7.1, to determine the steady-state error performance.

Application to Stable Systems

Since we are concerned with the difference between the input and the output of a feedback control system after the steady state has been reached, our discussion is limited to stable systems, where the natural response approaches zero as $t \to \infty$. Unstable systems represent loss of control in the steady state and are not acceptable for use at all. The expressions we derive to calculate the steady-state error can be applied erroneously to an unstable system. Thus, the engineer must check the system for stability while performing steady-state error analysis and design. However, in order to focus on the topic, we assume that all the systems in examples and problems in this chapter are stable. For practice, you may want to test some of the systems for stability.

Evaluating Steady-State Errors

Let us examine the concept of steady-state errors. In Figure 7.2(a) a step input and two possible outputs are shown. Output 1 has zero steady-state error, and output 2 has a finite steady-state error, $e_2(\infty)$. A similar example is shown in Figure 7.2(b), where a ramp input is compared with output 1, which has zero steady-state error, and output 2, which has a finite steady-state error, $e_2(\infty)$, as measured vertically between the input and output 2 after the transients have died down. For the ramp input
another possibility exists. If the output’s slope is different from that of the input, then output 3, shown in Figure 7.2(b), results. Here the steady-state error is infinite as measured vertically between the input and output 3 after the transients have died down, and \(t \) approaches infinity.

Let us now look at the error from the perspective of the most general block diagram. Since the error is the difference between the input and the output of a system, we assume a closed-loop transfer function, \(T(s) \), and form the error, \(E(s) \), by taking the difference between the input and the output, as shown in Figure 7.3(a). Here we are interested in the steady-state, or final, value of \(e(t) \). For unity feedback systems, \(E(s) \) appears as shown in Figure 7.3(b). In this chapter, we study and derive expressions for the steady-state error for unity feedback systems first and then expand to nonunity feedback systems. Before we begin our study of steady-state errors for unity feedback systems, let us look at the sources of the errors with which we deal.

FIGURE 7.2 Steady-state error:
- **a.** step input; **b.** ramp input

FIGURE 7.3 Closed-loop control system error:
- **a.** general representation; **b.** representation for unity feedback systems
Sources of Steady-State Error

Many steady-state errors in control systems arise from nonlinear sources, such as backlash in gears or a motor that will not move unless the input voltage exceeds a threshold. Nonlinear behavior as a source of steady-state errors, although a viable topic for study is beyond the scope of a text on linear control systems. The steady-state errors we study here are errors that arise from the configuration of the system itself and the type of applied input.

For example, look at the system of Figure 7.4(a), where $R(s)$ is the input, $C(s)$ is the output, and $E(s) = R(s) - C(s)$ is the error. Consider a step input. In the steady state, if $c(t)$ equals $r(t)$, $e(t)$ will be zero. But with a pure gain, K, the error, $e(t)$, cannot be zero if $c(t)$ is to be finite and nonzero. Thus, by virtue of the configuration of the system (a pure gain of K in the forward path), an error must exist. If we call $c_{\text{steady-state}}$ the steady-state value of the output and $e_{\text{steady-state}}$ the steady-state value of the error, then $c_{\text{steady-state}} = Ke_{\text{steady-state}}$, or

$$e_{\text{steady-state}} = \frac{1}{K}c_{\text{steady-state}} \quad (7.1)$$

Thus, the larger the value of K, the smaller the value of $e_{\text{steady-state}}$ would have to be to yield a similar value of $c_{\text{steady-state}}$. The conclusion we can draw is that with a pure gain in the forward path, there will always be a steady-state error. This error diminishes as the value of K increases.

If the forward-path gain is replaced by an integrator, as shown in Figure 7.4(b), there will be zero error in the steady state for a step input. The reasoning is as follows: As $c(t)$ increases, $e(t)$ will decrease, since $e(t) = r(t) - c(t)$. This decrease will continue until there is zero error, but there will still be a value for $c(t)$ since an integrator can have a constant output without any input. For example, a motor can be represented simply as an integrator. A voltage applied to the motor will cause rotation. When the applied voltage is removed, the motor will stop and remain at its present output position. Since it does not return to its initial position, we have an angular displacement output without an input to the motor. Therefore, a system similar to Figure 7.4(b), which uses a motor in the forward path, can have zero steady-state error for a step input.

We have examined two cases qualitatively to show how a system can be expected to exhibit various steady-state error characteristics, depending upon the system configuration. We now formalize the concepts and derive the relationships between the steady-state errors and the system configuration generating these errors.

7.2 Steady-State Error for Unity Feedback Systems

Steady-state error can be calculated from a system’s closed-loop transfer function, $T(s)$, or the open-loop transfer function, $G(s)$, for unity feedback systems. We begin by deriving the system’s steady-state error in terms of the closed-loop transfer function.
function, \(T(s) \), in order to introduce the subject and the definitions. Next we obtain insight into the factors affecting steady-state error by using the open-loop transfer function, \(G(s) \), in unity feedback systems for our calculations. Later in the chapter we generalize this discussion to nonunity feedback systems.

Steady-State Error in Terms of \(T(s) \)

Consider Figure 7.3(a). To find \(E(s) \), the error between the input, \(R(s) \), and the output, \(C(s) \), we write

\[
E(s) = R(s) - C(s) \tag{7.2}
\]

But

\[
C(s) = R(s)T(s) \tag{7.3}
\]

Substituting Eq. (7.3) into Eq. (7.2), simplifying, and solving for \(E(s) \) yields

\[
E(s) = R(s)[1 - T(s)] \tag{7.4}
\]

Although Eq. (7.4) allows us to solve for \(e(t) \) at any time, \(t \), we are interested in the final value of the error, \(e(\infty) \). Applying the final value theorem,\(^1\) which allows us to use the final value of \(e(t) \) without taking the inverse Laplace transform of \(E(s) \), and then letting \(t \) approach infinity, we obtain

\[
e(\infty) = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) \tag{7.5}^2
\]

Substituting Eq. (7.4) into Eq. (7.5) yields

\[
e(\infty) = \lim_{s \to \infty} sR(s)[1 - T(s)] \tag{7.6}
\]

Let us look at an example.

\(^1\) The final value theorem is derived from the Laplace transform of the derivative. Thus,

\[
\mathcal{L}[\dot{f}(t)] = \int_0^\infty \dot{f}(t)e^{st}dt = sF(s) - f(0-)
\]

As \(s \to 0 \),

\[
\int_0^\infty \dot{f}(t)dt = f(\infty) - f(0-) = \lim_{s \to 0} sF(s) - f(0-)
\]

or

\[
f(\infty) = \lim_{s \to 0} sF(s)
\]

For finite steady-state errors, the final value theorem is valid only if \(F(s) \) has poles only in the left half-plane and, at most, one pole at the origin. However, correct results that yield steady-state errors that are infinite can be obtained if \(F(s) \) has more than one pole at the origin (see D’Azzo and Houpis, 1988). If \(F(s) \) has poles in the right half-plane or poles on the imaginary axis other than at the origin, the final value theorem is invalid.

\(^2\) Valid only if (1) \(E(s) \) has poles only in the left half-plane and at the origin, and (2) the closed-loop transfer function, \(T(s) \), is stable. Notice that by using Eq. (7.5), numerical results can be obtained for unstable systems. These results, however, are meaningless.
Example 7.1

Steady-State Error in Terms of $T(s)$

PROBLEM: Find the steady-state error for the system of Figure 7.3(a) if $T(s) = \frac{5}{s^2 + 7s + 10}$ and the input is a unit step.

SOLUTION: From the problem statement, $R(s) = \frac{1}{s}$ and $T(s) = \frac{5}{s^2 + 7s + 10}$.

Substituting into Eq. (7.4) yields

$$E(s) = \frac{s^2 + 7s + 5}{s(s^2 + 7s + 10)}$$

(7.7)

Since $T(s)$ is stable and, subsequently, $E(s)$ does not have right-half-plane poles or jω poles other than at the origin, we can apply the final value theorem. Substituting Eq. (7.7) into Eq. (7.5) gives $e(\infty) = 1/2$.

Steady-State Error in Terms of $G(s)$

Many times we have the system configured as a unity feedback system with a forward transfer function, $G(s)$. Although we can find the closed-loop transfer function, $T(s)$, and then proceed as in the previous subsection, we find more insight for analysis and design by expressing the steady-state error in terms of $G(s)$ rather than $T(s)$.

Consider the feedback control system shown in Figure 7.3(b). Since the feedback, $H(s)$, equals 1, the system is unity feedback. From Fig. 7.3(b), note that $E(s)$ is actually the error between the input, $R(s)$, and the output, $C(s)$. Thus, if we solve for $E(s)$, we will have an expression for the error. We will then apply the final value theorem, Item 11 in Table 2.2, to evaluate the steady-state error.

Writing $E(s)$ from Figure 7.3(b), we obtain

$$E(s) = R(s) - C(s)$$

(7.8)

But

$$C(s) = E(s)G(s)$$

(7.9)

Finally, substituting Eq. (7.9) into Eq. (7.8) and solving for $E(s)$ yields

$$E(s) = \frac{R(s)}{1 + G(s)}$$

(7.10)

We now apply the final value theorem, Eq. (7.5). At this point in a numerical calculation, we must check to see whether the closed-loop system is stable, using, for example, the Routh-Hurwitz criterion. For now, though, assume that the closed-loop system is stable and substitute Eq. (7.10) into Eq. (7.5), obtaining

$$e(\infty) = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

(7.11)

Equation (7.11) allows us to calculate the steady-state error, $e(\infty)$, given the input, $R(s)$, and the system, $G(s)$. We now substitute several inputs for $R(s)$ and then...
draw conclusions about the relationships that exist between the open-loop system, \(G(s) \), and the nature of the steady-state error, \(e(\infty) \).

The three test signals we use to establish specifications for a control system’s steady-state error characteristics are shown in Table 7.1. Let us take each input and evaluate its effect on the steady-state error by using Eq. (7.11).

Step Input. Using Eq. (7.11) with \(R(s) = 1/s \), we find

\[
e(\infty) = e_{\text{step}}(\infty) = \lim_{s \to 0} \frac{s(1/s)}{1 + G(s)} = \frac{1}{1 + \lim_{s \to 0} G(s)}
\]

(7.12)

The term

\[
\lim_{s \to 0} G(s)
\]

is the dc gain of the forward transfer function, since \(s \), the frequency variable, is approaching zero. In order to have zero steady-state error,

\[
\lim_{s \to 0} G(s) = \infty
\]

(7.13)

Hence, to satisfy Eq. (7.13), \(G(s) \) must take on the following form:

\[
G(s) = \frac{(s + z_1)(s + z_2) \cdots}{s^n(s + p_1)(s + p_2) \cdots}
\]

(7.14)

and for the limit to be infinite, the denominator must be equal to zero as \(s \) goes to zero. Thus, \(n \geq 1 \); that is, at least one pole must be at the origin. Since division by \(s \) in the frequency domain is integration in the time domain (see Table 2.2, Item 10), we are also saying that at least one pure integration must be present in the forward path. The steady-state response for this case of zero steady-state error is similar to that shown in Figure 7.2(a), output 1.

If there are no integrations, then \(n = 0 \). Using Eq. (7.14), we have

\[
\lim_{s \to 0} G(s) = \frac{z_1 z_2 \cdots}{p_1 p_2 \cdots}
\]

(7.15)

which is finite and yields a finite error from Eq. (7.12). Figure 7.2(a), output 2, is an example of this case of finite steady-state error.

In summary, for a step input to a unity feedback system, the steady-state error will be zero if there is at least one pure integration in the forward path. If there are no integrations, then there will be a nonzero finite error. This result is comparable to our qualitative discussion in Section 7.1, where we found that a pure gain yields a constant steady-state error for a step input, but an integrator yields zero error for the same type of input. We now repeat the development for a ramp input.

Ramp Input. Using Eq. (7.11) with \(R(s) = 1/s^2 \), we obtain

\[
e(\infty) = e_{\text{ramp}}(\infty) = \lim_{s \to 0} \frac{s(1/s^2)}{1 + G(s)} = \lim_{s \to 0} \frac{1}{s + sG(s)} = \frac{1}{\lim_{s \to 0} sG(s)}
\]

(7.16)
To have zero steady-state error for a ramp input, we must have
\[\lim_{s \to 0} sG(s) = \infty \] \hspace{1cm} (7.17)

To satisfy Eq. (7.17), \(G(s) \) must take the same form as Eq. (7.14), except that \(n \geq 2 \). In other words, there must be at least two integrations in the forward path. An example of zero steady-state error for a ramp input is shown in Figure 7.2(b), output 1.

If only one integration exists in the forward path, then, assuming Eq. (7.14),
\[\lim_{s \to 0} sG(s) = \frac{z_1 z_2 \cdots}{p_1 p_2 \cdots} \] \hspace{1cm} (7.18)

which is finite rather than infinite. Using Eq. (7.16), we find that this configuration leads to a constant error, as shown in Figure 7.2(b), output 2.

If there are no integrations in the forward path, then
\[\lim_{s \to 0} sG(s) = 0 \] \hspace{1cm} (7.19)

and the steady-state error would be infinite and lead to diverging ramps, as shown in Figure 7.2(b), output 3. Finally, we repeat the development for a parabolic input.

Parabolic Input. Using Eq. (7.11) with \(R(s) = \frac{1}{s^3} \), we obtain
\[e(\infty) = e_{\text{parabola}}(\infty) = \lim_{s \to 0} s \left(\frac{1}{s^3} \right) = \lim_{s \to 0} \frac{1}{1 + G(s)} = \frac{1}{\lim_{s \to 0} s^2 G(s)} \] \hspace{1cm} (7.20)

In order to have zero steady-state error for a parabolic input, we must have
\[\lim_{s \to 0} s^2 G(s) = \infty \] \hspace{1cm} (7.21)

To satisfy Eq. (7.21), \(G(s) \) must take on the same form as Eq. (7.14), except that \(n \geq 3 \). In other words, there must be at least three integrations in the forward path.

If there are only two integrations in the forward path, then
\[\lim_{s \to 0} s^2 G(s) = \frac{z_1 z_2 \cdots}{p_1 p_2 \cdots} \] \hspace{1cm} (7.22)

is finite rather than infinite. Using Eq. (7.20), we find that this configuration leads to a constant error.

If there is only one or less integration in the forward path, then
\[\lim_{s \to 0} s^2 G(s) = 0 \] \hspace{1cm} (7.23)

and the steady-state error is infinite. Two examples demonstrate these concepts.

Example 7.2

Steady-State Errors for Systems with No Integrations

Problem: Find the steady-state errors for inputs of \(5u(t) \), \(5tu(t) \), and \(5t^2u(t) \) to the system shown in Figure 7.5. The function \(u(t) \) is the unit step.
SOLUTION: First we verify that the closed-loop system is indeed stable. For this example we leave out the details. Next, for the input $5u(t)$, whose Laplace transform is $5/s$, the steady-state error will be five times as large as that given by Eq. (7.12), or

$$e(\infty) = e_{\text{step}}(\infty) = \frac{5}{1 + \lim_{s \to 0} G(s)} = \frac{5}{1 + 20} = \frac{5}{21}$$

which implies a response similar to output 2 of Figure 7.2(a).

For the input $tu(t)$, whose Laplace transform is $5/s^2$, the steady-state error will be five times as large as that given by Eq. (7.16), or

$$e(\infty) = e_{\text{ramp}}(\infty) = \frac{5}{\lim_{s \to 0} sG(s)} = \frac{5}{0} = \infty$$

which implies a response similar to output 3 of Figure 7.2(b).

For the input $t^2u(t)$, whose Laplace transform is $10/s^3$, the steady-state error will be 10 times as large as that given by Eq. (7.20), or

$$e(\infty) = e_{\text{parabola}}(\infty) = \frac{10}{\lim_{s \to 0} s^2G(s)} = \frac{10}{0} = \infty$$

Example 7.3

Steady-State Errors for Systems with One Integration

PROBLEM: Find the steady-state errors for inputs of $5u(t)$, $5tu(t)$, and $t^2u(t)$ to the system shown in Figure 7.6. The function $u(t)$ is the unit step.

SOLUTION: First verify that the closed-loop system is indeed stable. For this example we leave out the details. Next note that since there is an integration in the forward path, the steady-state errors for some of the input waveforms will be less than those found in Example 7.2. For the input $5u(t)$, whose Laplace transform is $5/s$, the steady-state error will be five times as large as that given by Eq. (7.12), or

$$e(\infty) = e_{\text{step}}(\infty) = \frac{5}{1 + \lim_{s \to 0} G(s)} = \frac{5}{1 + 20} = \frac{5}{21}$$

which implies a response similar to output 1 of Figure 7.2(a). Notice that the integration in the forward path yields zero error for a step input, rather than the finite error found in Example 7.2.

For the input $5tu(t)$, whose Laplace transform is $5/s^2$, the steady-state error will be five times as large as that given by Eq. (7.16), or

$$e(\infty) = e_{\text{ramp}}(\infty) = \frac{5}{\lim_{s \to 0} sG(s)} = \frac{5}{100} = \frac{1}{20}$$
which implies a response similar to output 2 of Figure 7.2(b). Notice that the integration in the forward path yields a finite error for a ramp input, rather than the infinite error found in Example 7.2.

For the input, $5t^2u(t)$, whose Laplace transform is $10/s^3$, the steady-state error will be 10 times as large as that given by Eq. (7.20), or

$$e(\infty) = e_{\text{parabola}}(\infty) = \lim_{s \to 0} \frac{s^2G(s)}{10} = \frac{0}{0} = \infty$$

(7.29)

Notice that the integration in the forward path does not yield any improvement in steady-state error over that found in Example 7.2 for a parabolic input.

Skill-Assessment Exercise 7.1

PROBLEM: A unity feedback system has the following forward transfer function:

$$G(s) = \frac{10(s + 20)(s + 30)}{s(s + 25)(s + 35)}$$

a. Find the steady-state error for the following inputs: $15u(t)$, $15tu(t)$, and $15t^2u(t)$.

b. Repeat for

$$G(s) = \frac{10(s + 20)(s + 30)}{s^2(s + 25)(s + 35)(s + 50)}$$

ANSWERS:

a. The closed-loop system is stable. For $15u(t)$, $e_{\text{step}}(\infty) = 0$; for $15tu(t)$, $e_{\text{ramp}}(\infty) = 2.1875$; for $15t^2u(t)$, $e_{\text{parabola}}(\infty) = \infty$.

b. The closed-loop system is unstable. Calculations cannot be made.

The complete solution is at www.wiley.com/college/nise.

7.3 Static Error Constants and System Type

We continue our focus on unity negative feedback systems and define parameters that we can use as steady-state error performance specifications, just as we defined damping ratio, natural frequency, settling time, percent overshoot, and so on as performance specifications for the transient response. These steady-state error performance specifications are called **static error constants**. Let us see how they are defined, how to calculate them, and, in the next section, how to use them for design.
Static Error Constants

In the previous section we derived the following relationships for steady-state error. For a step input, \(u(t) \),

\[
e(\infty) = e_{\text{step}}(\infty) = \frac{1}{1 + \lim_{s \to 0} G(s)}
\]

(7.30)

For a ramp input, \(tu(t) \),

\[
e(\infty) = e_{\text{ramp}}(\infty) = \frac{1}{\lim_{s \to 0} sG(s)}
\]

(7.31)

For a parabolic input, \(\frac{1}{2} t^2 u(t) \),

\[
e(\infty) = e_{\text{parabola}}(\infty) = \frac{1}{\lim_{s \to 0} s^2 G(s)}
\]

(7.32)

The three terms in the denominator that are taken to the limit determine the steady-state error. We call these limits static error constants. Individually, their names are position constant, \(K_p \), where

\[
K_p = \lim_{s \to 0} G(s)
\]

(7.33)

velocity constant, \(K_v \), where

\[
K_v = \lim_{s \to 0} sG(s)
\]

(7.34)

acceleration constant, \(K_a \), where

\[
K_a = \lim_{s \to 0} s^2 G(s)
\]

(7.35)

As we have seen, these quantities, depending upon the form of \(G(s) \), can assume values of zero, finite constant, or infinity. Since the static error constant appears in the denominator of the steady-state error. Eqs. (7.30) through (7.32), the value of the steady-state error decreases as the static error constant increases.

In Section 7.2, we evaluated the steady-state error by using the final value theorem. An alternate method makes use of the static error constants. A few examples follow.

Example 7.4

Steady-State Error via Static Error Constants

PROBLEM: For each system of Figure 7.7, evaluate the static error constants and find the expected error for the standard step, ramp, and parabolic inputs.
7.3 Static Error Constants and System Type

SOLUTION: First verify that all closed-loop systems shown are indeed stable. For this example we leave out the details. Next, for Figure 7.7(a),

\[K_p = \lim_{s \to 0} G(s) = \frac{500 \times 2 \times 5}{8 \times 10 \times 12} = 5.208 \]

\[K_v = \lim_{s \to 0} sG(s) = 0 \]

\[K_a = \lim_{s \to 0} s^2 G(s) = 0 \]

Thus, for a step input,

\[e(\infty) = \frac{1}{1 + K_p} = 0.161 \]

For a ramp input,

\[e(\infty) = \frac{1}{K_v} = \infty \]

For a parabolic input,

\[e(\infty) = \frac{1}{K_a} = \infty \]

Now, for Figure 7.7(b),

\[K_p = \lim_{s \to 0} G(s) = \infty \]

\[K_v = \lim_{s \to 0} sG(s) = \frac{500 \times 2 \times 5 \times 6}{8 \times 10 \times 12} = 31.25 \]
and

\[K_a = \lim_{s \to 0} s^2 G(s) = 0 \] \hspace{1cm} (7.44)

Thus, for a step input,

\[e(\infty) = \frac{1}{1 + K_p} = 0 \] \hspace{1cm} (7.45)

For a ramp input,

\[e(\infty) = \frac{1}{K_v} = \frac{1}{31.25} = 0.032 \] \hspace{1cm} (7.46)

For a parabolic input,

\[e(\infty) = \frac{1}{K_a} = \infty \] \hspace{1cm} (7.47)

Finally, for Figure 7.7(c),

\[K_p = \lim_{s \to 0} G(s) = \infty \] \hspace{1cm} (7.48)

\[K_v = \lim_{s \to 0} sG(s) = \infty \] \hspace{1cm} (7.49)

and

\[K_a = \lim_{s \to 0} s^2 G(s) = \frac{500 \times 2 \times 4 \times 5 \times 6 \times 7}{8 \times 10 \times 12} = 875 \] \hspace{1cm} (7.50)

Apago PDF Enhancer

Thus, for a step input,

\[e(\infty) = \frac{1}{1 + K_p} = 0 \] \hspace{1cm} (7.51)

For a ramp input,

\[e(\infty) = \frac{1}{K_v} = 0 \] \hspace{1cm} (7.52)

For a parabolic input,

\[e(\infty) = \frac{1}{K_a} = \frac{1}{875} = 1.14 \times 10^{-3} \] \hspace{1cm} (7.53)

Students who are using MATLAB should now run ch7p1 in Appendix B. You will learn how to test the system for stability, evaluate static error constants, and calculate steady-state error using MATLAB. This exercise applies MATLAB to solve Example 7.4 with System (b).

System Type

Let us continue to focus on a unity negative feedback system. The values of the static error constants, again, depend upon the form of \(G(s) \), especially the number of pure integrations in the forward path. Since steady-state errors are dependent upon the
number of integrations in the forward path, we give a name to this system attribute. Given the system in Figure 7.8, we define system type to be the value of \(n \) in the denominator or, equivalently, the number of pure integrations in the forward path. Therefore, a system with \(n = 0 \) is a Type 0 system. If \(n = 1 \) or \(n = 2 \), the corresponding system is a Type 1 or Type 2 system, respectively.

Table 7.2 ties together the concepts of steady-state error, static error constants, and system type. The table shows the static error constants and the steady-state errors as functions of input waveform and system type.

TABLE 7.2 Relationships between input, system type, static error constants, and steady-state errors

<table>
<thead>
<tr>
<th>Input</th>
<th>Steady-state error formula</th>
<th>Type 0</th>
<th>Type 1</th>
<th>Type 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Static error constant</td>
<td>Error</td>
<td>Static error constant</td>
</tr>
<tr>
<td>Step, (u(t))</td>
<td>(\frac{1}{1 + K_p})</td>
<td>(K_p = \text{Constant})</td>
<td>(\frac{1}{1 + K_p})</td>
<td>(K_p = \infty)</td>
</tr>
<tr>
<td>Ramp, (tu(t))</td>
<td>(\frac{1}{K_v})</td>
<td>(K_v = 0)</td>
<td>(\infty)</td>
<td>(K_v = \text{Constant})</td>
</tr>
<tr>
<td>Parabola, (\frac{1}{2}t^2u(t))</td>
<td>(\frac{1}{K_a})</td>
<td>(K_a = 0)</td>
<td>(\infty)</td>
<td>(K_a = 0)</td>
</tr>
</tbody>
</table>

Skill-Assessment Exercise 7.2

PROBLEM: A unity feedback system has the following forward transfer function:

\[
G(s) = \frac{1000(s + 8)}{(s + 7)(s + 9)}
\]

a. Evaluate system type, \(K_p \), \(K_v \), and \(K_a \).

b. Use your answers to a. to find the steady-state errors for the standard step, ramp, and parabolic inputs.

ANSWERS:

a. The closed-loop system is stable. System type = Type 0. \(K_p = 127 \), \(K_v = 0 \), and \(K_a = 0 \).

b. \(e_{\text{step}}(\infty) = 7.8 \times 10^{-3} \), \(e_{\text{ramp}}(\infty) = \infty \), and \(e_{\text{parabola}}(\infty) = \infty \)

The complete solution is at www.wiley.com/college/nise.

In this section, we defined steady-state errors, static error constants, and system type. Now the specifications for a control system’s steady-state errors will be formulated, followed by some examples.

7.4 Steady-State Error Specifications

Static error constants can be used to specify the steady-state error characteristics of control systems, such as that shown in Figure 7.9. Just as damping ratio, \(\zeta \), settling time, \(T_s \), peak time, \(T_p \), and percent overshoot, \(\%OS \), are used as specifications for a
control system’s transient response, so the position constant, K_p, velocity constant, K_v, and acceleration constant, K_a, can be used as specifications for a control system’s steady-state errors. We will soon see that a wealth of information is contained within the specification of a static error constant.

For example, if a control system has the specification $K_v = 1000$, we can draw several conclusions:

1. The system is stable.
2. The system is of Type 1, since only Type 1 systems have K_v’s that are finite constants. Recall that $K_v = 0$ for Type 0 systems, whereas $K_v = \infty$ for Type 2 systems.
3. A ramp input is the test signal. Since K_v is specified as a finite constant, and the steady-state error for a ramp input is inversely proportional to K_v, we know the test input is a ramp.
4. The steady-state error between the input ramp and the output ramp is $1/K_v$ per unit of input slope.

Let us look at two examples that demonstrate analysis and design using static error constants.

Example 7.5

Interpreting the Steady-State Error Specification

PROBLEM: What information is contained in the specification $K_p = 1000$?

SOLUTION: The system is stable. The system is Type 0, since only a Type 0 system has a finite K_p. Type 1 and Type 2 systems have $K_p = \infty$. The input test signal is a step, since K_p is specified. Finally, the error per unit step is

$$e(\infty) = \frac{1}{1 + K_p} = \frac{1}{1 + 1000} = \frac{1}{1001}$$

(7.54)
Example 7.6

Gain Design to Meet a Steady-State Error Specification

PROBLEM: Given the control system in Figure 7.10, find the value of K so that there is 10% error in the steady state.

SOLUTION: Since the system is Type 1, the error stated in the problem must apply to a ramp input; only a ramp yields a finite error in a Type 1 system. Thus,

$$e(\infty) = \frac{1}{K_v} = 0.1$$

(7.55)

Therefore,

$$K_v = 10 = \lim_{s \to 0} sG(s) = \frac{K \times 5}{6 \times 7 \times 8}$$

(7.56)

which yields

$$K = 672$$

(7.57)

Applying the Routh-Hurwitz criterion, we see that the system is stable at this gain.

Although this gain meets the criteria for steady-state error and stability, it may not yield a desirable transient response. In Chapter 9 we will design feedback control systems to meet all three specifications.

Apago PDF Enhancer

Students who are using MATLAB should now run ch7 p2 in Appendix B. You will learn how to find the gain to meet a steady-state error specification using MATLAB. This exercise solves Example 7.6 using MATLAB.

Skill-Assessment Exercise 7.3

PROBLEM: A unity feedback system has the following forward transfer function:

$$G(s) = \frac{K(s + 12)}{(s + 14)(s + 18)}$$

Find the value of K to yield a 10% error in the steady state.

ANSWER: $K = 189$

The complete solution is at www.wiley.com/college/nise.

TryIt 7.2

Use MATLAB, the Control System Toolbox, and the following statements to solve Skill-Assessment Exercise 7.3 and check the resulting system for stability.

```matlab
numg=[1 12];
deng=poly([-14 -18]);
G=tf(numg,deng);
Kpdk=dcgain(G);
estep=0.1;
K=(1/estep-1)/Kpdk
T=feedback(G,1);
poles=pole(T)
```
This example and exercise complete our discussion of unity feedback systems. In the remaining sections, we will deal with the steady-state errors for disturbances and the steady-state errors for feedback control systems in which the feedback is not unity.

7.5 Steady-State Error for Disturbances

Feedback control systems are used to compensate for disturbances or unwanted inputs that enter a system. The advantage of using feedback is that regardless of these disturbances, the system can be designed to follow the input with small or zero error, as we now demonstrate. Figure 7.11 shows a feedback control system with a disturbance, \(D(s) \), injected between the controller and the plant. We now re-derive the expression for steady-state error with the disturbance included.

The transform of the output is given by

\[
C(s) = E(s)G_1(s)G_2(s) + D(s)G_2(s)
\]

(7.58)

But

\[
C(s) = R(s) - E(s)
\]

(7.59)

Substituting Eq. (7.59) into Eq. (7.58) and solving for \(E(s) \), we obtain

\[
E(s) = \frac{1}{1 + G_1(s)G_2(s)}R(s) - \frac{G_2(s)}{1 + G_1(s)G_2(s)}D(s)
\]

(7.60)

where we can think of \(1/[1 + G_1(s)G_2(s)] \) as a transfer function relating \(E(s) \) to \(R(s) \) and \(-G_2(s)/[1 + G_1(s)G_2(s)] \) as a transfer function relating \(E(s) \) to \(D(s) \).

To find the steady-state value of the error, we apply the final value theorem\(^3\) to Eq. (7.60) and obtain

\[
e(\infty) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \left(\frac{1}{1 + G_1(s)G_2(s)}R(s) - \frac{G_2(s)}{1 + G_1(s)G_2(s)}D(s) \right)
\]

(7.61)

where

\[
e_R(\infty) = \lim_{s \to 0} \frac{s}{1 + G_1(s)G_2(s)}R(s)
\]

and

\[
e_D(\infty) = -\lim_{s \to 0} \frac{sG_2(s)}{1 + G_1(s)G_2(s)}D(s)
\]

The first term, \(e_R(\infty) \), is the steady-state error due to \(R(s) \), which we have already obtained. The second term, \(e_D(\infty) \), is the steady-state error due to the disturbance. Let us explore the conditions on \(e_D(\infty) \) that must exist to reduce the error due to the disturbance.

At this point, we must make some assumptions about \(D(s) \), the controller, and the plant. First we assume a step disturbance, \(D(s) = 1/s \). Substituting this value into

\(^3\)Remember that the final value theorem can be applied only if the system is stable, with the roots of \([1 + G_1(s)G_2(s)] \) in the left-half-plane.