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Stability

6

Chapter Learning Outcomes

After completing this chapter the student will be able to:

� Make and interpret a basic Routh table to determine the stability of a system
(Sections 6.1–6.2)

� Make and interpret a Routh table where either the first element of a row is zero or an
entire row is zero (Sections 6.3–6.4)

� Use a Routh table to determine the stability of a system represented in state space
(Section 6.5)

Case Study Learning Outcomes

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

� Given the antenna azimuth position control system shown on the front endpapers,
you will be able to find the range of preamplifier gain to keep the system stable.

� Given the block diagrams for the UFSS vehicle’s pitch and heading control systems on
the back endpapers, you will be able to determine the range of gain for stability of
the pitch or heading control system.
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6.1 Introduction

In Chapter 1, we saw that three requirements enter into the design of a control
system: transient response, stability, and steady-state errors. Thus far we have
covered transient response, which we will revisit in Chapter 8. We are now ready
to discuss the next requirement, stability.

Stability is the most important system specification. If a system is unstable,
transient response and steady-state errors are moot points. An unstable system
cannot be designed for a specific transient response or steady-state error require-
ment. What, then, is stability? There are many definitions for stability, depending
upon the kind of system or the point of view. In this section, we limit ourselves to
linear, time-invariant systems.

In Section 1.5, we discussed that we can control the output of a system if the
steady-state response consists of only the forced response. But the total response of a
system is the sum of the forced and natural responses, or

cðtÞ ¼ cforcedðtÞ þ cnaturalðtÞ ð6:1Þ
Using these concepts, we present the following definitions of stability, instability, and
marginal stability:

A linear, time-invariant system is stable if the natural response approaches zero as
time approaches infinity.

A linear, time-invariant system is unstable if the natural response grows without
bound as time approaches infinity.

A linear, time-invariant system is marginally stable if the natural response neither
decays nor grows but remains constant or oscillates as time approaches infinity.

Thus, the definition of stability implies that only the forced response remains as the
natural response approaches zero.

These definitions rely on a description of the natural response. When one is
looking at the total response, it may be difficult to separate the natural response from
the forced response. However, we realize that if the input is bounded and the total
response is not approaching infinity as time approaches infinity, then the natural
response is obviously not approaching infinity. If the input is unbounded, we see an
unbounded total response, and we cannot arrive at any conclusion about the stability
of the system; we cannot tell whether the total response is unbounded because the
forced response is unbounded or because the natural response is unbounded. Thus,
our alternate definition of stability, one that regards the total response and implies
the first definition based upon the natural response, is this:

A system is stable if every bounded input yields a bounded output.

We call this statement the bounded-input, bounded-output (BIBO) definition of
stability.

Let us now produce an alternate definition for instability based on the total
response rather than the natural response. We realize that if the input is bounded but
the total response is unbounded, the system is unstable, since we can conclude that
the natural response approaches infinity as time approaches infinity. If the input is
unbounded, we will see an unbounded total response, and we cannot draw any
conclusion about the stability of the system; we cannot tell whether the total
response is unbounded because the forced response is unbounded or because the
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natural response is unbounded. Thus, our alternate definition of instability, one that
regards the total response, is this:

A system is unstable if any bounded input yields an unbounded output.

These definitions help clarify our previous definition of marginal stability,
which really means that the system is stable for some bounded inputs and unstable
for others. For example, we will show that if the natural response is undamped, a
bounded sinusoidal input of the same frequency yields a natural response of growing
oscillations. Hence, the system appears stable for all bounded inputs except this one
sinusoid. Thus, marginally stable systems by the natural response definitions are
included as unstable systems under the BIBO definitions.

Let us summarize our definitions of stability for linear, time-invariant systems.
Using the natural response:

1. A system is stable if the natural response approaches zero as time approaches
infinity.

2. A system is unstable if the natural response approaches infinity as time
approaches infinity.

3. A system is marginally stable if the natural response neither decays nor grows but
remains constant or oscillates.

Using the total response (BIBO):

1. A system is stable if every bounded input yields a bounded output.

2. A system is unstable if any bounded input yields an unbounded output.

Physically, an unstable system whose natural response grows without bound
can cause damage to the system, to adjacent property, or to human life. Many times
systems are designed with limited stops to prevent total runaway. From the
perspective of the time response plot of a physical system, instability is displayed
by transients that grow without bound and, consequently, a total response that does
not approach a steady-state value or other forced response.1

How do we determine if a system is stable? Let us focus on the natural response
definitions of stability. Recall from our study of system poles that poles in the left
half-plane (lhp) yield either pure exponential decay or damped sinusoidal natural
responses. These natural responses decay to zero as time approaches infinity. Thus, if
the closed-loop system poles are in the left half of the plane and hence have a
negative real part, the system is stable. That is, stable systems have closed-loop
transfer functions with poles only in the left half-plane.

Poles in the right half-plane (rhp) yield either pure exponentially increasing or
exponentially increasing sinusoidal natural responses. These natural responses
approach infinity as time approaches infinity. Thus, if the closed-loop system poles
are in the right half of the s-plane and hence have a positive real part, the system is
unstable. Also, poles of multiplicity greater than 1 on the imaginary axis lead to
the sum of responses of the form Atn cos ðvt þ fÞ, where n ¼ 1; 2; . . . ; which also
approaches infinity as time approaches infinity. Thus, unstable systems have closed-
loop transfer functions with at least one pole in the right half-plane and/or poles of
multiplicity greater than 1 on the imaginary axis.

1 Care must be taken here to distinguish between natural responses growing without bound and a forced
response, such as a ramp or exponential increase, that also grows without bound. A system whose forced
response approaches infinity is stable as long as the natural response approaches zero.
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Finally, a system that has imaginary axis poles of multiplicity 1 yields pure
sinusoidal oscillations as a natural response. These responses neither increase nor
decrease in amplitude. Thus, marginally stable systems have closed-loop transfer
functionswith only imaginary axis poles ofmultiplicity 1 and poles in the left half-plane.

As an example, the unit step response of the stable system of Figure 6.1(a) is
compared to that of the unstable system of Figure 6.1(b). The responses, also shown
in Figure 6.1, show that while the oscillations for the stable system diminish, those for
the unstable system increase without bound. Also notice that the stable system’s
response in this case approaches a steady-state value of unity.

It is not always a simple matter to determine if a feedback control system is
stable. Unfortunately, a typical problem that arises is shown in Figure 6.2. Although
we know the poles of the forward transfer function in Figure 6.2(a), we do not know
the location of the poles of the equivalent closed-loop system of Figure 6.2(b)
without factoring or otherwise solving for the roots.

However, under certain conditions, we can draw some conclusions about
the stability of the system. First, if the closed-loop transfer function has only

FIGURE 6.1 Closed-loop
poles and response:
a. stable system;
b. unstable system
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left–half-plane poles, then the factors of the denominator of the closed-loop system
transfer function consist of products of terms such as ðsþ aiÞ, where ai is real and
positive, or complex with a positive real part. The product of such terms is a
polynomial with all positive coefficients.2 No term of the polynomial can be missing,
since that would imply cancellation between positive and negative coefficients or
imaginary axis roots in the factors, which is not the case. Thus, a sufficient condition
for a system to be unstable is that all signs of the coefficients of the denominator of
the closed-loop transfer function are not the same. If powers of s are missing, the
system is either unstable or, at best, marginally stable. Unfortunately, if all coef-
ficients of the denominator are positive and not missing, we do not have definitive
information about the system’s pole locations.

If the method described in the previous paragraph is not sufficient, then a
computer can be used to determine the stability by calculating the root locations of
the denominator of the closed-loop transfer function. Today some hand-held
calculators can evaluate the roots of a polynomial. There is, however, another
method to test for stability without having to solve for the roots of the denominator.
We discuss this method in the next section.

6.2 Routh-Hurwitz Criterion

In this section, we learn a method that yields stability information without the need
to solve for the closed-loop system poles. Using this method, we can tell how many
closed-loop system poles are in the left half-plane, in the right half-plane, and on the
jv-axis. (Notice that we say how many, not where.) We can find the number of poles
in each section of the s-plane, but we cannot find their coordinates. The method is
called the Routh-Hurwitz criterion for stability (Routh, 1905).

The method requires two steps: (1) Generate a data table called a Routh table
and (2) interpret the Routh table to tell how many closed-loop system poles are in
the left half-plane, the right half-plane, and on the jv-axis. You might wonder why we
study the Routh-Hurwitz criterion when modern calculators and computers can tell
us the exact location of system poles. The power of the method lies in design rather
than analysis. For example, if you have an unknown parameter in the denominator of
a transfer function, it is difficult to determine via a calculator the range of this
parameter to yield stability. You would probably rely on trial and error to answer the

C(s)R(s)
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C(s)R(s)

(a)

–

+ E(s)

s(s + 4)(s + 6)(s + 8)(s + 10)

10(s + 2)

10(s + 2)

s5 + 28s4 + 284s3 + 1232s2 + 1930s + 20

FIGURE 6.2 Common cause
of problems in finding closed-
loop poles: a. original system;
b. equivalent system

2 The coefficients can also be made all negative by multiplying the polynomial by �1. This operation does
not change the root location.
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stability question. We shall see later that the Routh-Hurwitz criterion can yield a
closed-form expression for the range of the unknown parameter.

In this section, we make and interpret a basic Routh table. In the next section,
we consider two special cases that can arise when generating this data table.

Generating a Basic Routh Table
Look at the equivalent closed-loop transfer function shown in Fig-
ure 6.3. Since we are interested in the system poles, we focus our
attention on the denominator. We first create the Routh table shown
in Table 6.1. Begin by labeling the rows with powers of s from the
highest power of the denominator of the closed-loop transfer func-

tion to s0. Next start with the coefficient of the highest power of s in the denominator
and list, horizontally in the first row, every other coefficient. In the second row, list
horizontally, starting with the next highest power of s, every coefficient that was
skipped in the first row.

The remaining entries are filled in as follows. Each entry is a negative determi-
nant of entries in the previous two rows divided by the entry in the first column directly
above the calculated row. The left-hand column of the determinant is always the first
column of the previous two rows, and the right-hand column is the elements of the
columnaboveandtotheright.Thetable iscompletewhenallof therowsarecompleted
down to s0. Table 6.2 is the completed Routh table. Let us look at an example.

Example 6.1

Creating a Routh Table

PROBLEM: Make the Routh table for the system shown in Figure 6.4(a).

SOLUTION: The first step is to find the equivalent closed-loop system because we
want to test the denominator of this function, not the given forward transfer

N(s) C(s)R(s)

a4s4 + a3s3 + a2s2 + a1s + a0

FIGURE 6.3 Equivalent closed-loop transfer
function

TABLE 6.1 Initial layout for Routh table

s4 a4 a2 a0

s3 a3 a1 0

s2

s1

s0

TABLE 6.2 Completed Routh table

s4 a4 a2 a0
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FIGURE 6.4 a. Feedback
system for Example 6.1;
b. equivalent closed-
loop system
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function, for pole location. Using the feedback formula, we obtain the equivalent
system of Figure 6.4(b). The Routh-Hurwitz criterion will be applied to this
denominator. First label the rows with powers of s from s3 down to s0 in a vertical
column, as shown in Table 6.3. Next form the first row of the table, using the
coefficients of the denominator of the closed-loop transfer function. Start with
the coefficient of the highest power and skip every other power of s. Now form the
second row with the coefficients of the denominator skipped in the previous step.
Subsequent rows are formed with determinants, as shown in Table 6.2.

For convenience, any row of the Routh table can be multiplied by a positive
constant without changing the values of the rows below. This can be proved by
examining the expressions for the entries and verifying that any multiplicative
constant from a previous row cancels out. In the second row of Table 6.3, for
example, the row was multiplied by 1/10. We see later that care must be taken not to
multiply the row by a negative constant.

Interpreting the Basic Routh Table
Now that we know how to generate the Routh table, let us see how to interpret it.
The basic Routh table applies to systems with poles in the left and right half-planes.
Systems with imaginary poles and the kind of Routh table that results will be
discussed in the next section. Simply stated, the Routh-Hurwitz criterion declares
that the number of roots of the polynomial that are in the right half-plane is equal to
the number of sign changes in the first column.

If the closed-loop transfer function has all poles in the left half of the s-plane,
the system is stable. Thus, a system is stable if there are no sign changes in the first
column of the Routh table. For example, Table 6.3 has two sign changes in the
first column. The first sign change occurs from 1 in the s2 row to �72 in the s1 row.
The second occurs from �72 in the s1 row to 103 in the s0 row. Thus, the system of
Figure 6.4 is unstable since two poles exist in the right half-plane.

Skill-Assessment Exercise 6.1

PROBLEM: Make a Routh table and tell how many roots of the following
polynomial are in the right half-plane and in the left half-plane.

PðsÞ ¼ 3s7 þ 9s6 þ 6s5 þ 4s4 þ 7s3 þ 8s2 þ 2sþ 6

ANSWER: Four in the right half-plane (rhp), three in the left half-plane (lhp).

The complete solution is at www.wiley.com/college/nise.

TABLE 6.3 Completed Routh table for Example 6.1

s3 1 31 0

s2 10 1 1030 103 0

s1
�
���� 11

31
103

����
1

¼ �72
�
���� 10

0
0

����
1

¼ 0
�
���� 11

0
0

����
1

¼ 0

s0
�
���� 1
�72

103
0

����
�72

¼ 103
�
���� 1
�72

0
0

����
�72

¼ 0
�
���� 1
�72

0
0

����
�72

¼ 0
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Now that we have described how to generate and interpret a basic Routh table,
let us look at two special cases that can arise.

6.3 Routh-Hurwitz Criterion: Special Cases

Two special cases can occur: (1) The Routh table sometimes will have a zero only in
the first column of a row, or (2) the Routh table sometimes will have an entire row
that consists of zeros. Let us examine the first case.

Zero Only in the First Column
If the first element of a row is zero, division by zero would be required to form the
next row. To avoid this phenomenon, an epsilon, e, is assigned to replace the zero in
the first column. The value e is then allowed to approach zero from either the
positive or the negative side, after which the signs of the entries in the first column
can be determined. Let us look at an example.

Example 6.2

Stability via Epsilon Method

PROBLEM: Determine the stability of the closed-loop transfer function

TðsÞ ¼ 10

s5 þ 2s4 þ 3s3 þ 6s2 þ 5sþ 3
ð6:2Þ

SOLUTION: The solution is shown in Table 6.4. We form the Routh table by using
the denominator of Eq. (6.2). Begin by assembling the Routh table down to the row
where a zero appears only in the first column (the s3 row). Next replace the zero by
a small number, e, and complete the table. To begin the interpretation, we must first
assume a sign, positive or negative, for the quantity e. Table 6.5 shows the first
column of Table 6.4 along with the resulting signs for choices of e positive and
e negative.

TryIt 6.1

Use the following MATLAB
statement to find the poles of
the closed-loop transfer
function in Eq. (6.2).

roots([1 2 3 6 5 3])

TABLE 6.4 Completed Routh table for
Example 6.2

s5 1 3 5

s4 2 6 3

s3 0 e
7

2
0

s2 6e� 7

e
3 0

s1 42e� 49 � 6e2

12e� 14
0 0

s0 3 0 0

TABLE 6.5 Determining signs in first column of a Routh table with
zero as first element in a row

Label First column e ¼ þ e ¼ �
s5 1 + +

s4 2 + +

s3 0 e + �

s2 6e� 7

e
� +

s1 42e� 49 � 6e2

12e� 14
+ +

s0 3 + +
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If e is chosen positive, Table 6.5 will show a sign change from the s3 row to the
s2 row, and there will be another sign change from the s2 row to the s1 row. Hence,
the system is unstable and has two poles in the right half-plane.

Alternatively, we could choose e negative. Table 6.5 would then show a
sign change from the s4 row to the s3 row. Another sign change would occur
from the s3 row to the s2 row. Our result would be exactly the same as that for
a positive choice for e. Thus, the system is unstable, with two poles in the right
half-plane.

Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB’s Symbolic Math Toolbox
should now run ch6sp1 in Appendix F at www.wiley.com/college/
nise. You will learn how to use the Symbolic Math Toolbox to
calculate the values of cells in a Routh table even if the table
contains symbolic objects, such as e. You will see that the
Symbolic Math Toolbox and MATLAB yield an alternate way to gen-
erate the Routh table for Example 6.2.

Another method that can be used when a zero appears only in the first column
of a row is derived from the fact that a polynomial that has the reciprocal roots of the
original polynomial has its roots distributed the same—right half-plane, left half-
plane, or imaginary axis—because taking the reciprocal of the root value does not
move it to another region. Thus, if we can find the polynomial that has the reciprocal
roots of the original, it is possible that the Routh table for the new polynomial will
not have a zero in the first column. This method is usually computationally easier
than the epsilon method just described.

We now show that the polynomial we are looking for, the one with the
reciprocal roots, is simply the original polynomial with its coefficients written in
reverse order (Phillips, 1991). Assume the equation

sn þ an�1s
n�1 þ � � � þ a1sþ a0 ¼ 0 ð6:3Þ

If s is replaced by 1=d, then d will have roots which are the reciprocal of s. Making this
substitution in Eq. (6.3),

1

d

� �n

þ an�1
1

d

� �n�1

þ � � � þ a1
1

d

� �
þ a0 ¼ 0 ð6:4Þ

Factoring out ð1=dÞn,

1

d

� �n

1 þ an�1
1

d

� ��1

þ � � � þ a1
1

d

� � 1�nð Þ
þ a0

1

d

� ��n
" #

¼ 1

d

� �n

½1 þ an�1dþ � � � þ a1d
ðn�1Þ þ a0d

n� ¼ 0 ð6:5Þ

Thus, the polynomial with reciprocal roots is a polynomial with the coefficients
written in reverse order. Let us redo the previous example to show the computa-
tional advantage of this method.
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Example 6.3

Stability via Reverse Coefficients

PROBLEM: Determine the stability of the closed-loop transfer function

TðsÞ ¼ 10

s5 þ 2s4 þ 3s3 þ 6s2 þ 5sþ 3
ð6:6Þ

SOLUTION: First write a polynomial that has the reciprocal roots of the denomi-
nator of Eq. (6.6). From our discussion, this polynomial is formed by writing the
denominator of Eq. (6.6) in reverse order. Hence,

DðsÞ ¼ 3s5 þ 5s4 þ 6s3 þ 3s2 þ 2sþ 1 ð6:7Þ
We form the Routh table as shown in Table 6.6 using Eq. (6.7). Since there are two
sign changes, the system is unstable and has two right-half-plane poles. This is the
same as the result obtained in Example 6.2. Notice that Table 6.6 does not have a
zero in the first column.

Entire Row is Zero
We now look at the second special case. Sometimes while making a Routh table, we
find that an entire row consists of zeros because there is an even polynomial that is a
factor of the original polynomial. This case must be handled differently from the case
of a zero in only the first column of a row. Let us look at an example that
demonstrates how to construct and interpret the Routh table when an entire row
of zeros is present.

Example 6.4

Stability via Routh Table with Row of Zeros

PROBLEM: Determine the number of right-half-plane poles in the closed-loop
transfer function

TðsÞ ¼ 10

s5 þ 7s4 þ 6s3 þ 42s2 þ 8sþ 56
ð6:8Þ

SOLUTION: Start by forming the Routh table for the denominator of Eq. (6.8)
(see Table 6.7). At the second row we multiply through by 1/7 for convenience. We
stop at the third row, since the entire row consists of zeros, and use the following

TABLE 6.6 Routh table for Example 6.3

s5 3 6 2

s4 5 3 1

s3 4.2 1.4

s2 1.33 1

s1 �1.75

s0 1
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procedure. First we return to the row immediately above the row of zeros and
form an auxiliary polynomial, using the entries in that row as coefficients. The
polynomial will start with the power of s in the label column and continue by
skipping every other power of s. Thus, the polynomial formed for this example is

PðsÞ ¼ s4 þ 6s2 þ 8 ð6:9Þ
Next we differentiate the polynomial with respect to s and obtain

dPðsÞ
ds

¼ 4s3 þ 12sþ 0 ð6:10Þ
Finally, we use the coefficients of Eq. (6.10) to replace the row of zeros. Again, for
convenience, the third row is multiplied by 1/4 after replacing the zeros.

The remainder of the table is formed in a straightforward manner by
following the standard form shown in Table 6.2. Table 6.7 shows that all entries
in the first column are positive. Hence, there are no right–half-plane poles.

Let us look further into the case that yields an entire row of
zeros. An entire row of zeros will appear in the Routh table when a
purely even or purely odd polynomial is a factor of the original
polynomial. For example, s4 þ 5s2 þ 7 is an even polynomial; it has
only even powers of s. Even polynomials only have roots that are
symmetrical about the origin.3 This symmetry can occur under three
conditions of root position: (1) The roots are symmetrical and real,
(2) the roots are symmetrical and imaginary, or (3) the roots are
quadrantal. Figure 6.5 shows examples of these cases. Each case or
combination of these cases will generate an even polynomial.

It is this even polynomial that causes the row of zeros to
appear. Thus, the row of zeros tells us of the existence of an even
polynomial whose roots are symmetric about the origin. Some of
these roots could be on the jv-axis. On the other hand, since jv roots
are symmetric about the origin, if we do not have a row of zeros, we
cannot possibly have jv roots.

Another characteristic of the Routh table for the case in
question is that the row previous to the row of zeros contains the even polynomial
that is a factor of the original polynomial. Finally, everything from the row
containing the even polynomial down to the end of the Routh table is a test of
only the even polynomial. Let us put these facts together in an example.

TABLE 6.7 Routh table for Example 6.4

s5 1 6 8

s4 7 1 42 6 56 8

s3 0 4 1 0 12 3 0 0 0

s2 3 8 0

s1
1

3
0 0

s0 8 0 0

C

C

C

C

A A
σ

ωj

s-plane

A:   Real and symmetrical about the origin
B:   Imaginary and symmetrical about the origin
C:   Quadrantal and symmetrical about the origin

B

B

FIGURE 6.5 Root positions to generate even
polynomials: A, B, C, or any combination

3 The polynomial s5 þ 5s3 þ 7s is an example of an odd polynomial; it has only odd powers of s. Odd
polynomials are the product of an even polynomial and an odd power of s. Thus, the constant term of an
odd polynomial is always missing.
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Example 6.5

Pole Distribution via Routh Table with Row of Zeros

PROBLEM: For the transfer function

TðsÞ ¼ 20

s8 þ s7 þ 12s6 þ 22s5 þ 39s4 þ 59s3 þ 48s2 þ 38sþ 20
ð6:11Þ

tell how many poles are in the right half-plane, in the left half-plane, and on the
jv-axis.

SOLUTION: Use the denominator of Eq. (6.11) and form the Routh table in
Table 6.8. For convenience the s6 row is multiplied by 1/10, and the s5 row is
multiplied by 1/20. At the s3 row we obtain a row of zeros. Moving back one row to
s4, we extract the even polynomial, P(s), as

PðsÞ ¼ s4 þ 3s2 þ 2 ð6:12Þ

This polynomial will divide evenly into the denominator of Eq. (6.11) and thus is a
factor. Taking the derivative with respect to s to obtain the coefficients that replace
the row of zeros in the s3 row, we find

dPðsÞ
ds

¼ 4s3 þ 6sþ 0 ð6:13Þ

Replace the row of zeros with 4, 6, and 0 and multiply the row by 1/2 for
convenience. Finally, continue the table to the s0 row, using the standard procedure.

How do we now interpret this Routh table? Since all entries from the even
polynomial at the s4 row down to the s0 row are a test of the even polynomial, we
begin to draw some conclusions about the roots of the even polynomial. No sign
changes exist from the s4 row down to the s0 row. Thus, the even polynomial does
not have right–half-plane poles. Since there are no right–half-plane poles, no left–
half-plane poles are present because of the requirement for symmetry. Hence, the
even polynomial, Eq. (6.12), must have all four of its poles on the jv-axis.4 These
results are summarized in the first column of Table 6.9.

TABLE 6.8 Routh table for Example 6.5

s8 1 12 39 48 20

s7 1 22 59 38 0

s6 � 10 � 1 � 20 � 2 10 1 20 2 0

s5 20 1 60 3 40 2 0 0

s4 1 3 2 0 0

s3 0 4 2 0 6 3 0 0 0 0 0

s2 3

2
3 2 4 0 0 0

s1 1

3
0 0 0 0

s0 4 0 0 0 0

4 A necessary condition for stability is that the jv roots have unit multiplicity. The even polynomial must be
checked for multiple jv roots. For this case, the existence of multiple jv roots would lead to a perfect,
fourth-order square polynomial. Since Eq. (6.12) is not a perfect square, the four jv roots are distinct.
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The remaining roots of the total polynomial are evaluated from the s8 row down
to the s4 row. We notice two sign changes: one from the s7 row to the s6 row and the
other from the s6 row to the s5 row. Thus, the other polynomial must have two roots in
the right half-plane. These results are included in Table 6.9 under ‘‘Other’’. The final
tally is the sum of roots from each component, the even polynomial and the other
polynomial, as shown under ‘‘Total’’ in Table 6.9. Thus, the system has two poles in
the right half-plane, two poles in the left half-plane, and four poles on the jv-axis; it is
unstable because of the right–half-plane poles.

We nowsummarize what wehave learned about polynomials that generate entire
rows ofzeros intheRouthtable. Thesepolynomials have apurelyevenfactor withroots
that are symmetrical about the origin. The even polynomial appears in the Routh
table in the row directly above the row of zeros. Every entry in the table from the even
polynomial’s rowto theendof the chartapplies only to theevenpolynomial. Therefore,
the number of sign changes from the even polynomial to the end of the table equals the
number of right-half-plane roots of the even polynomial. Because of the symmetry of
roots about the origin, the even polynomial must have the same number of left–half-
plane roots as it does right–half-plane roots. Having accounted for the roots in the right
and left half-planes, we know the remaining roots must be on the jv-axis.

Every row in the Routh table from the beginning of the chart to the row
containing the even polynomial applies only to the other factor of the original
polynomial. For this factor, the number of sign changes, from the beginning of the
table down to the even polynomial, equals the number of right–half-plane roots.
The remaining roots are left–half-plane roots. There can be no jv roots contained in
the other polynomial.

Skill-Assessment Exercise 6.2

PROBLEM: Use the Routh-Hurwitz criterion to find how many poles of the
following closed-loop system, T(s), are in the rhp, in the lhp, and on the jv-axis:

TðsÞ ¼ s3 þ 7s2 � 21sþ 10

s6 þ s5 � 6s4 þ 0s3 � s2 � sþ 6

ANSWER: Two rhp, two lhp, and two jv

The complete solution is at www.wiley.com/college/nise.

Let us demonstrate the usefulness of the Routh-Hurwitz criterion with a few
additional examples.

TABLE 6.9 Summary of pole locations for Example 6.5

Polynomial

Location
Even

(fourth-order)
Other

(fourth-order)
Total

(eighth-order)

Right half-plane 0 2 2

Left half-plane 0 2 2

jv 4 0 4

6.3 Routh-Hurwitz Criterion: Special Cases 313

Virtual Experiment 6.1
Stability

Put theory into practice and
evaluate the stability of the
Quanser Linear Inverted Pendu-
lum in LabVIEW. When in the
upward balanced position, this
system addresses the challenge of
stabilizing a rocket during take-
off. In the downward position it
emulates the construction
gantry crane.

Virtual experiments are found
on WileyPLUS.
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6.4 Routh-Hurwitz Criterion: Additional Examples

The previous two sections have introduced the Routh-Hurwitz criterion. Now we need
to demonstrate the method’s application to a number of analysis and design problems.

Example 6.6

Standard Routh-Hurwitz

PROBLEM: Find the number of poles in the left half-plane, the right half-plane, and
on the jv-axis for the system of Figure 6.6.

SOLUTION: First, find the closed-loop transfer function as

TðsÞ ¼ 200

s4 þ 6s3 þ 11s2 þ 6sþ 200
ð6:14Þ

The Routh table for the denominator of Eq. (6.14) is shown as Table 6.10. For
clarity, we leave most zero cells blank. At the s1 row there is a negative coefficient;
thus, there are two sign changes. The system is unstable, since it has two right–half-
plane poles and two left–half-plane poles. The system cannot have jv poles since a
row of zeros did not appear in the Routh table.

The next example demonstrates the occurrence of a zero in only the first
column of a row.

Example 6.7

Routh-Hurwitz with Zero in First Column

PROBLEM: Find the number of poles in the left half-plane, the right half-plane, and
on the jv-axis for the system of Figure 6.7.

FIGURE 6.6 Feedback
control system for
Example 6.6

200 C(s)R(s) + E(s)

s(s3 + 6s2 + 11s + 6)–

TABLE 6.10 Routh table for Example 6.6

s4 1 11 200

s3 6 1 6 1

s2 10 1 200 20

s1 �19

s0 20

FIGURE 6.7 Feedback control
system for Example 6.7

1 C(s)R(s)

–

+

s(2s4 + 3s3 + 2s2 + 3s + 2)

E(s)
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SOLUTION: The closed-loop transfer function is

TðsÞ ¼ 1

2s5 þ 3s4 þ 2s3 þ 3s2 þ 2sþ 1
ð6:15Þ

Form the Routh table shown as Table 6.11, using the denominator of Eq. (6.15). A
zero appears in the first column of the s3 row. Since the entire row is not zero,
simply replace the zero with a small quantity, e, and continue the table. Permitting e

to be a small, positive quantity, we find that the first term of the s2 row is negative.
Thus, there are two sign changes, and the system is unstable, with two poles in the
right half-plane. The remaining poles are in the left half-plane.

We also can use the alternative approach, where we produce a polynomial
whose roots are the reciprocal of the original. Using the denominator of Eq. (6.15),
we form a polynomial by writing the coefficients in reverse order,

s5 þ 2s4 þ 3s3 þ 2s2 þ 3sþ 2 ð6:16Þ
The Routh table for this polynomial is shown as Table 6.12. Unfortunately, in this
case we also produce a zero only in the first column at the s2 row. However, the
table is easier to work with than Table 6.11. Table 6.12 yields the same results as
Table 6.11: three poles in the left half-plane and two poles in the right half-plane.
The system is unstable.

Students who are using MATLAB should now run ch6p1 in Appendix B.
You will learn how to perform block diagram reduction to find T(s),
followed by an evaluation of the closed-loop system’s poles to
determine stability. This exercise uses MATLAB to do Example 6.7.

TABLE 6.11 Routh table for Example 6.7

s5 2 2 2

s4 3 3 1

s3 0 e
4

3

s2 3e� 4

e
1

s1 12e� 16 � 3e2

9e� 12

s0 1

TABLE 6.12 Alternative Routh table for Example 6.7

s5 1 3 3

s4 2 2 2

s3 2 2

s2 0 e 2

s1 2e� 4

e

s0 2
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In the next example, we see an entire row of zeros appear along with the
possibility of imaginary roots.

Example 6.8

Routh-Hurwitz with Row of Zeros

PROBLEM: Find the number of poles in the left half-plane, the right half-plane, and
on the jv-axis for the system of Figure 6.8. Draw conclusions about the stability of
the closed-loop system.

SOLUTION: The closed-loop transfer function for the system of Figure 6.8 is

TðsÞ ¼ 128

s8 þ 3s7 þ 10s6 þ 24s5 þ 48s4 þ 96s3 þ 128s2 þ 192sþ 128
ð6:17Þ

Using the denominator, form the Routh table shown as Table 6.13. A row of zeros
appears in the s5 row. Thus, the closed-loop transfer function denominator must have
an even polynomial as a factor. Return to the s6 row and form the even polynomial:

PðsÞ ¼ s6 þ 8s4 þ 32s2 þ 64 ð6:18Þ

Differentiate this polynomial with respect to s to form the coefficients that will
replace the row of zeros:

dPðsÞ
ds

¼ 6s5 þ 32s3 þ 64sþ 0 ð6:19Þ

Replace the row of zeros at the s5 row by the coefficients of Eq. (6.19) and multiply
through by 1/2 for convenience. Then complete the table.

We note that there are two sign changes from the even polynomial at the
s6 row down to the end of the table. Hence, the even polynomial has two right–half-

FIGURE 6.8
Feedback
control system
for Example 6.8

128R(s)

–

+ C(s)

s(s7 + 3s6 + 10s5 + 24s4 + 48s3 + 96s2 + 128s + 192)

E(s)

TryIt 6.2

Use MATLAB, The Control
System Toolbox, and the fol-
lowing statements to find the
closed-loop transfer function,
T(s), for Figure 6.8 and the
closed-loop poles.

numg=128;
deng=[1 3 10 24 ...
48 96 128 192 0];

G=tf(numg,deng);
T=feedback(G,1)
poles=pole(T)

TABLE 6.13 Routh table for Example 6.8

s8 1 10 48 128 128

s7 3 1 24 8 96 32 192 64

s6 2 1 16 8 64 32 128 64

s5 0 6 3 0 32 16 0 64 32 0 0 0

s4 8

3
1

64

3
8 64 24

s3 �8 � 1 �40 � 5

s2 3 1 24 8

s1 3

s0 8
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plane poles. Because of the symmetry about the origin, the even polynomial must
have an equal number of left–half-plane poles. Therefore, the even polynomial
has two left–half-plane poles. Since the even polynomial is of sixth order, the two
remaining poles must be on the jv-axis.

There are no sign changes from the beginning of the table down to the even
polynomial at the s6 row. Therefore, the rest of the polynomial has no right–half-
plane poles. The results are summarized in Table 6.14. The system has two poles in
the right half-plane, four poles in the left half-plane, and two poles on the jv-axis,
which are of unit multiplicity. The closed-loop system is unstable because of the
right–half-plane poles.

The Routh-Hurwitz criterion gives vivid proof that changes in the gain of a
feedback control system result in differences in transient response because of
changes in closed-loop pole locations. The next example demonstrates this concept.
We will see that for control systems, such as those shown in Figure 6.9, gain variations
can move poles from stable regions of the s-plane onto the jv-axis and then into the
right half-plane.

TABLE 6.14 Summary of pole locations for Example 6.8

Polynomial

Location
Even

(sixth-order)
Other

(second-order)
Total

(eighth-order)

Right half-plane 2 0 2

Left half-plane 2 2 4

jv 2 0 2

Fiber-optic
tether

Syntactic
flotation module

(1200 Ibs)

Thrusters
(1 of 7)Lifting bailLong baseline &

emergency beacon

Emergency
flasher

Video
camera

Video
camera

Flash for
still photography

250-watt
lamps

(1 of 8) Electronic compass

Side-scan sonar
electronics housing

Telemetry housing w/lasers
Manipulator electronics housing

Computer housing w/gyro

Altimeter

Wiring junction box
(1 of 2)

Aluminum
tubular frame

Side-scan
transceiver array

(1 of 2)

Still film
camera

Manipulator with
coring tool

Pan & till
unit

FIGURE 6.9 Jason is an
underwater, remote-controlled
vehicle that has been used to
explore the wreckage of the
Lusitania. The manipulator
and cameras comprise some of
the vehicle’s control systems
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Example 6.9

Stability Design via Routh-Hurwitz

PROBLEM: Find the range of gain, K, for the system of Figure 6.10 that will cause
the system to be stable, unstable, and marginally stable. Assume K > 0.

SOLUTION: First find the closed-loop transfer function as

TðsÞ ¼ K

s3 þ 18s2 þ 77sþK
ð6:20Þ

Next form the Routh table shown as Table 6.15.

Since K is assumed positive, we see that all elements in the first column are
always positive except the s1 row. This entry can be positive, zero, or negative,
depending upon the value of K. If K < 1386, all terms in the first column will be
positive, and since there are no sign changes, the system will have three poles in the
left half-plane and be stable.

If K > 1386, the s1 term in the first column is negative. There are two sign
changes, indicating that the system has two right–half-plane poles and one left–
half-plane pole, which makes the system unstable.

If K ¼ 1386, we have an entire row of zeros, which could signify jv poles.
Returning to the s2 row and replacing K with 1386, we form the even polynomial

PðsÞ ¼ 18s2 þ 1386 ð6:21Þ
Differentiating with respect to s, we have

dPðsÞ
ds

¼ 36sþ 0 ð6:22Þ
Replacing the row of zeros with the coefficients of Eq. (6.22), we obtain the Routh-
Hurwitz table shown as Table 6.16 for the case of K ¼ 1386.

FIGURE 6.10 Feedback control
system for Example 6.9

K C(s)E(s)R(s)
s(s + 7)(s + 11)

–

+

TABLE 6.15 Routh table for Example 6.9

s3 1 77

s2 18 K

s1 1386 �K

18
s0 K

TABLE 6.16 Routh table for Example 6.9 with K = 1386

s3 1 77

s2 18 1386

s1 0 36

s0 1386
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Since there are no sign changes from the even polynomial (s2 row) down to
the bottom of the table, the even polynomial has its two roots on the jv-axis of unit
multiplicity. Since there are no sign changes above the even polynomial, the
remaining root is in the left half-plane. Therefore the system is marginally stable.

Students who are using MATLAB should now run ch6p2 in Appendix B.
Youwill learnhow toset upa looptosearchforthe rangeofgainto
yield stability. This exercise uses MATLAB to do Example 6.9.

Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB’s Symbolic Math Toolbox
should now run ch6sp2 in Appendix F at www.wiley.com/college/
nise. You will learn how to use the Symbolic Math Toolbox to
calculate the values of cells in a Routh table even if the table
contains symbolic objects, such as a variable gain, K. You will
see that the Symbolic Math Toolbox and MATLAB yield an alterna-
tive way to solve Example 6.9.

The Routh-Hurwitz criterion is often used in limited applications to factor
polynomials containing even factors. Let us look at an example.

Example 6.10

Factoring via Routh-Hurwitz

PROBLEM: Factor the polynomial

s4 þ 3s3 þ 30s2 þ 30sþ 200 ð6:23Þ
SOLUTION: Form the Routh table of Table 6.17. We find that the s1 row is a row of
zeros. Now form the even polynomial at the s2 row:

PðsÞ ¼ s2 þ 10 ð6:24Þ

This polynomial is differentiated with respect to s in order to complete the Routh
table. However, since this polynomial is a factor of the original polynomial in Eq.
(6.23), dividing Eq. (6.23) by (6.24) yields ðs2 þ 3sþ 20Þ as the other factor. Hence,

s4 þ 3s3 þ 30s2 þ 30sþ 200 ¼ ðs2 þ 10Þðs2 þ 3sþ 20Þ
¼ ðsþ j3:1623Þðs� j3:1623Þ

�ðsþ 1:5 þ j4:213Þðsþ 1:5 � j4:213Þ
ð6:25Þ

TABLE 6.17 Routh table for Example 6.10

s4 1 30 200

s3 3 1 30 10

s2 20 1 200 10

s1 0 2 0 0

s0 10
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Skill-Assessment Exercise 6.3

PROBLEM: For a unity feedback system with the forward transfer function

GðsÞ ¼ Kðsþ 20Þ
sðsþ 2Þðsþ 3Þ

find the range of K to make the system stable.

ANSWER: 0 < K < 2

The complete solution is at www.wiley.com/college/nise.

6.5 Stability in State Space

Up to this point we have examined stability from the s-plane viewpoint. Now we look
at stability from the perspective of state space. In Section 4.10, we mentioned that
the values of the system’s poles are equal to the eigenvalues of the system matrix, A.
We stated that the eigenvalues of the matrix A were solutions of the equation
det ðsI�AÞ ¼ 0, which also yielded the poles of the transfer function. Eigenvalues
appeared again in Section 5.8, where they were formally defined and used to
diagonalize a matrix. Let us now formally show that the eigenvalues and the system
poles have the same values.

Reviewing Section 5.8, the eigenvalues of a matrix, A, are values of l that
permit a nontrivial solution (other than 0) for x in the equation

Ax ¼ lx ð6:26Þ
In order to solve for the values of l that do indeed permit a solution for x, we

rearrange Eq. (6.26) as follows:

lx�Ax ¼ 0 ð6:27Þ
or

ðlI�AÞx ¼ 0 ð6:28Þ
Solving for x yields

x ¼ ðlI�AÞ�10 ð6:29Þ
or

x ¼ adjðlI�AÞ
detðlI�AÞ 0 ð6:30Þ

We see that all solutions will be the null vector except for the occurrence of
zero in the denominator. Since this is the only condition where elements of x will be
0=0, or indeterminate, it is the only case where a nonzero solution is possible.

The values of l are calculated by forcing the denominator to zero:

detðlI�AÞ ¼ 0 ð6:31Þ
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This equation determines the values of l for which a nonzero solution for x in
Eq. (6.26) exists. In Section 5.8, we defined x as eigenvectors and the values of l as the
eigenvalues of the matrix A.

Let us now relate the eigenvalues of the system matrix, A, to the system’s poles.
In Chapter 3 we derived the equation of the system transfer function, Eq. (3.73),
from the state equations. The system transfer function has detðsI�AÞ in the
denominator because of the presence of ðsI�AÞ�1. Thus,

detðsI�AÞ ¼ 0 ð6:32Þ
is the characteristic equation for the system from which the system poles can be
found.

Since Eqs. (6.31) and (6.32) are identical apart from a change in variable name,
we conclude that the eigenvalues of the matrix A are identical to the system’s poles
before cancellation of common poles and zeroes in the transfer function. Thus, we
can determine the stability of a system represented in state space by finding the
eigenvalues of the system matrix, A, and determining their locations on the s-plane.

Example 6.11

Stability in State Space

PROBLEM: Given the system

_x ¼
0 3 1
2 8 1

�10 �5 �2

2
4

3
5xþ

10
0
0

2
4

3
5u ð6:33aÞ

y ¼ ½1 0 0�x ð6:33bÞ
find out how many poles are in the left half-plane, in the right half-plane, and on the
jv-axis.

SOLUTION: First form ðsI�AÞ:

ðsI�AÞ ¼
s 0 0
0 s 0
0 0 s

2
4

3
5�

0 3 1
2 8 1

�10 �5 �2

2
4

3
5 ¼

s �3 �1
�2 s� 8 �1
10 5 sþ 2

2
4

3
5 ð6:34Þ

Now find the detðsI�AÞ:
detðsI�AÞ ¼ s3 � 6s2 � 7s� 52 ð6:35Þ

Using this polynomial, form the Routh table of Table 6.18.

TABLE 6.18 Routh table for Example 6.11

s3 1 �7

s2 � 6 � 3 �52 � 26

s1 � 47

3
� 1 0 0

s0 �26

6.5 Stability in State Space 321



Apago PDF Enhancer

E1C06 11/03/2010 21:23:7 Page 322

Since there is one sign change in the first column, the system has one right–
half-plane pole and two left–half-plane poles. It is therefore unstable. Yet, you may
question the possibility that if a nonminimum-phase zero cancels the unstable pole,
the system will be stable. However, in practice, the nonminimum-phase zero or
unstable pole will shift due to a slight change in the system’s parameters. This
change will cause the system to become unstable.

Students who are using MATLAB should now run ch6p3 in Appendix B.
You will learn how to determine the stability of a system repre-
sented in state space by finding the eigenvalues of the system
matrix. This exercise uses MATLAB to do Example 6.11.

Skill-Assessment Exercise 6.4

PROBLEM: For the following system represented in state space, find out how many
poles are in the left half-plane, in the right half-plane, and on the jv-axis.

_x ¼
2 1 1
1 7 1

�3 4 �5

2
4

3
5xþ

0
0
1

2
4
3
5r

y ¼ 0 1 0½ �x

ANSWER: Two rhp and one lhp.

The complete solution is at www.wiley.com/college/nise.

In this section, we have evaluated the stability of feedback control systems
from the state-space perspective. Since the closed-loop poles and the eigenvalues of
a system are the same, the stability requirement of a system represented in state
space dictates that the eigenvalues cannot be in the right half of the s-plane or be
multiple on the jv-axis.

We can obtain the eigenvalues from the state equations without first convert-
ing to a transfer function to find the poles: The equation detðsI�AÞ ¼ 0 yields the
eigenvalues directly. If detðsI�AÞ, a polynomial in s, cannot be factored easily, we
can apply the Routh-Hurwitz criterion to it to evaluate how many eigenvalues are in
each region of the s-plane.

We now summarize this chapter, first with case studies and then with a written
summary. Our case studies include the antenna azimuth position control system and
the UFSS. Stability is as important to these systems as it is to the system shown in
Figure 6.11.

TryIt 6.3

Use the following MATLAB
statements to find the eigen-
values of the system described
in Skill-Assessment
Exercise 6.4.

A=[2 1 1
1 7 1
�3 4 �5];

Eig=eig(A)
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Case Studies

Antenna Control: Stability Design via Gain

This chapter has covered the elements of stability. We saw that stable systems have
their closed-loop poles in the left half of the s-plane. As the loop gain is changed,
the locations of the poles are also changed, creating the possibility that the poles
can move into the right half of the s-plane, which yields instability. Proper gain
settings are essential for the stability of closed-loop systems. The following case
study demonstrates the proper setting of the loop gain to ensure stability.

PROBLEM: You are given the antenna azimuth position control system shown on
the front endpapers, Configuration 1. Find the range of preamplifier gain required
to keep the closed-loop system stable.

SOLUTION: The closed-loop transfer function was derived in the case studies in
Chapter 5 as

T sð Þ ¼ 6:63K

s3 þ 101:71s2 þ 171sþ 6:63K
ð6:36Þ

Using the denominator, create the Routh table shown as Table 6.19. The third row of
the table shows that a row of zeros occurs if K ¼ 2623. This value of K makes the
system marginally stable. Therefore, there will be no sign changes in the first column
if 0 < K < 2623. We conclude that, for stability, 0 < K < 2623.

FIGURE 6.11 The FANUC
M-410iBTM has 4 axes of
motion. It is seen here moving
and stacking sacks of
chocolate

TABLE 6.19 Routh table for antenna control case study

s3 1 171

s2 101.71 6.63K

s1 17392.41–6.63K 0

s0 6.63K

Case Studies 323
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CHALLENGE: We now give you a problem to test your knowledge of this chapter’s
objectives. Refer to the antenna azimuth position control system shown on the
front endpapers, Configuration 2. Find the range of preamplifier gain required to
keep the closed-loop system stable.

UFSS Vehicle: Stability Design via Gain

For this case study, we return to the UFSS vehicle and study the stability of the pitch
control system, which is used to control depth. Specifically, we find the range of
pitch gain that keeps the pitch control loop stable.

PROBLEM: The pitch control loop for the UFSS vehicle (Johnson, 1980) is shown
on the back endpapers. Let K2 ¼ 1 and find the range of K1 that ensures that the
closed-loop pitch control system is stable.

SOLUTION: The first step is to reduce the pitch control system to a single, closed-
loop transfer function. The equivalent forward transfer function, GeðsÞ, is

GeðsÞ ¼ 0:25K1ðsþ 0:435Þ
s4 þ 3:456s3 þ 3:457s2 þ 0:719sþ 0:0416

ð6:37Þ
With unity feedback the closed-loop transfer function, TðsÞ, is

TðsÞ ¼ 0:25K1ðsþ 0:435Þ
s4 þ 3:456s3 þ 3:457s2 þ ð0:719 þ 0:25K1Þsþ ð0:0416 þ 0:109K1Þ ð6:38Þ

The denominator of Eq. (6.38) is now used to formthe Routh table shown asTable 6.20.

Looking at the first column, the s4 and s3 rows are positive. Thus, all elements of
the first column must be positive for stability. For the first column of the s2 row to be
positive, �1 < K1 < 44:91. For the first column of the s1 row to be positive, the
numerator must be positive, since the denominator is positive from the previous
step. The solution to the quadratic term in the numerator yields roots of K1 ¼
�4:685 and 25.87. Thus, for a positive numerator, �4:685 < K1 < 25:87. Finally, for
the first column of the s0 row to be positive, �0:382 < K1 < 1. Using all three
conditions, stability will be ensured if �0:382 < K1 < 25:87.

CHALLENGE: You are now given a problem to test your knowledge of this chapter’s
objectives. For the UFSS vehicle (Johnson, 1980) heading control system shown on
the back endpapers and introduced in the UFSS case study challenge in Chapter 5,
do the following:

a. Find the range of heading gain that ensures the vehicle’s stability. Let K2 ¼ 1

b. Repeat Part a using MATLAB.

TABLE 6.20 Routh table for UFSS case study

s4 1 3.457 0:0416 þ 0:109K1

s3 3.456 0:719 þ 0:25K1

s2 11:228 � 0:25K1 0:144 þ 0:377K1

s1 �0:0625K2
1 þ 1:324K1 þ 7:575

11:228 � 0:25K1

s0 0:144 þ 0:377K1

Note: Some rows have been multiplied by a positive constant for convenience.
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In our case studies, we calculated the ranges of gain to ensure stability. The student
should be aware that although these ranges yield stability, setting gain within these
limits may not yield the desired transient response or steady-state error character-
istics. In Chapters 9 and 11, we will explore design techniques, other than simple gain
adjustment, that yield more flexibility in obtaining desired characteristics.

Summary

In this chapter, we explored the concepts of system stability from both the classical
and the state-space viewpoints. We found that for linear systems, stability is based on
a natural response that decays to zero as time approaches infinity. On the other hand,
if the natural response increases without bound, the forced response is overpowered
by the natural response, and we lose control. This condition is known as instability. A
third possibility exists: The natural response may neither decay nor grow without
bound but oscillate. In this case, the system is said to be marginally stable.

We also used an alternative definition of stability when the natural response is
not explicitly available. This definition is based on the total response and says that a
system is stable if every bounded input yields a bounded output (BIBO) and
unstable if any bounded input yields an unbounded output.

Mathematically, stability for linear, time-invariant systems can be determined
from the location of the closed-loop poles:

� If the poles are only in the left half-plane, the system is stable.

� If any poles are in the right half-plane, the system is unstable.

� If the poles are on the jv-axis and in the left half-plane, the system is marginally
stable as long as the poles on the jv-axis are of unit multiplicity; it is unstable if
there are any multiple jv poles.

Unfortunately, although the open-loop poles may be known, we found that in higher-
order systems it is difficult to find the closed-loop poles without a computer program.

The Routh-Hurwitz criterion lets us find how many poles are in each of the
sections of the s-plane without giving us the coordinates of the poles. Just knowing
that there are poles in the right half-plane is enough to determine that a system is
unstable. Under certain limited conditions, when an even polynomial is present, the
Routh table can be used to factor the system’s characteristic equation.

Obtaining stability from the state-space representation of a system is based on the
same concept—the location of the roots of the characteristic equation. These roots are
equivalent to the eigenvalues of the system matrix and can be found by solving
detðsI�AÞ ¼ 0. Again, the Routh-Hurwitz criterion can be applied to this polynomial.
The point is that the state-space representation of a system need not be converted to a
transferfunctioninordertoinvestigatestability.Inthenextchapter,wewilllookatsteady-
state errors, the last of three important control system requirements we emphasize.

Review Questions

1. What part of the output response is responsible for determining the stability of a
linear system?

2. What happens to the response named in Question 1 that creates instability?
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