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about 0.72, the time constant is evaluated where the curve reaches 0:63 � 0:72 ¼
0:45, or about 0.13 second. Hence, a ¼ 1=0:13 ¼ 7:7.

To find K, we realize from Eq. (4.11) that the forced response reaches a steady-
state value of K=a ¼ 0:72. Substituting the value of a, we find K ¼ 5:54. Thus, the
transfer function for the system is GðsÞ ¼ 5:54=ðsþ 7:7Þ. It is interesting to note that
the response of Figure 4.6 was generated using the transfer function GðsÞ ¼
5=ðsþ 7Þ.

Skill-Assessment Exercise 4.2

PROBLEM: A system has a transfer function, GðsÞ ¼ 50

sþ 50
. Find the time con-

stant, Tc, settling time, Ts, and rise time, Tr.

ANSWER: Tc ¼ 0:02 s; Ts ¼ 0:08 s; and Tr ¼ 0:044 s:

The complete solution is located at www.wiley.com/college/nise.

4.4 Second-Order Systems: Introduction

Let us now extend the concepts of poles and zeros and transient response to second-
order systems. Compared to the simplicity of a first-order system, a second-order
system exhibits a wide range of responses that must be analyzed and described.
Whereas varying a first-order system’s parameter simply changes the speed of the
response, changes in the parameters of a second-order system can change the form of
the response. For example, a second-order system can display characteristics much
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FIGURE 4.6 Laboratory results of a system step response test
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like a first-order system, or, depending on component values, display damped or
pure oscillations for its transient response.

To become familiar with the wide range of responses before formalizing our
discussion in the next section, we take a look at numerical examples of the second-
order system responses shown in Figure 4.7. All examples are derived from Figure
4.7(a), the general case, which has two finite poles and no zeros. The term in the
numerator is simply a scale or input multiplying factor that can take on any value
without affecting the form of the derived results. By assigning appropriate values to
parameters a and b, we can show all possible second-order transient responses. The
unit step response then can be found using CðsÞ ¼ RðsÞGðsÞ, where RðsÞ ¼ 1=s,
followed by a partial-fraction expansion and the inverse Laplace transform. Details
are left as an end-of-chapter problem, for which you may want to review Section 2.2.
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We now explain each response and show how we can use the poles to determine
the nature of the response without going through the procedure of a partial-fraction
expansion followed by the inverse Laplace transform.

Overdamped Response, Figure 4.7(b)
For this response,

CðsÞ ¼ 9

sðs2 þ 9sþ 9Þ ¼
9

sðsþ 7:854Þðsþ 1:146Þ ð4:12Þ

This function has a pole at the origin that comes from the unit step input and two real
poles that come from the system. The input pole at the origin generates the constant
forced response; each of the two system poles on the real axis generates an exponential
natural response whose exponential frequency is equal to the pole location. Hence, the
output initially could have been written as cðtÞ ¼ K1 þK2e�7:854t þK3e�1:146t. This
response, shown in Figure 4.7(b), is calledoverdamped.3 We see that the poles tell us the
form of the response without the tedious calculation of the inverse Laplace transform.

Underdamped Response, Figure 4.7 (c)
For this response,

CðsÞ ¼ 9

sðs2 þ 2sþ 9Þ ð4:13Þ

This function has a pole at the origin that comes from the unit step input and two
complex poles that come from the system. We now compare the response of the
second-order system to the poles that generated it. First we will compare the pole
location to the time function, and then we will compare the pole location to the plot.
From Figure 4.7(c), the poles that generate the natural response are at s ¼ �1 � j

ffiffiffi
8

p
.

Comparing these values to c(t) in the same figure, we see that the real part of the pole
matches the exponential decay frequency of the sinusoid’s amplitude, while the
imaginary part of the pole matches the frequency of the sinusoidal oscillation.

Let us now compare the pole location to the plot. Figure
4.8 shows a general, damped sinusoidal response for a second-
order system. The transient response consists of an exponen-
tially decaying amplitude generated by the real part of the
system pole times a sinusoidal waveform generated by
the imaginary part of the system pole. The time constant of
the exponential decay is equal to the reciprocal of the real part
of the system pole. The value of the imaginary part is the
actual frequency of the sinusoid, as depicted in Figure 4.8. This
sinusoidal frequency is given the name damped frequency of
oscillation, vd. Finally, the steady-state response (unit step)
was generated by the input pole located at the origin. We call
the type of response shown in Figure 4.8 an underdamped
response, one which approaches a steady-state value via a
transient response that is a damped oscillation.

The following example demonstrates how a knowledge
of the relationship between the pole location and the transient response can lead
rapidly to the response form without calculating the inverse Laplace transform.

c(t)

Exponential decay generated by 
real part of complex pole pair

Sinusoidal oscillation generated by
imaginary part of complex pole pair

t

FIGURE 4.8 Second-order step response components
generated by complex poles

3 So named because overdamped refers to a large amount of energy absorption in the system, which
inhibits the transient response from overshooting and oscillating about the steady-state value for a step
input. As the energy absorption is reduced, an overdamped system will become underdamped and exhibit
overshoot.
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Example 4.2

Form of Underdamped Response Using Poles

PROBLEM: By inspection, write the form of the step response of the
system in Figure 4.9.

SOLUTION: First we determine that the form of the forced response is a
step. Next we find the form of the natural response. Factoring the
denominator of the transfer function in Figure 4.9, we find the poles
to be s ¼ �5 � j13:23. The real part, �5, is the exponential frequency for the
damping. It is also the reciprocal of the time constant of the decay of the
oscillations. The imaginary part, 13.23, is the radian frequency for the sinusoidal
oscillations. Using our previous discussion and Figure 4.7(c) as a guide, we ob-
tain cðtÞ ¼ K1 þ e�5tðK2 cos 13:23t þK3 sin 13:23tÞ ¼ K1 þK4e�5tðcos 13:23t � fÞ,
where f ¼ tan�1K3=K2; K4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

2 þK2
3

q
, and c(t) is a constant plus an exponen-

tially damped sinusoid.

We will revisit the second-order underdamped response in Sections 4.5 and 4.6,
where we generalize the discussion and derive some results that relate the pole
position to other parameters of the response.

Undamped Response, Figure 4.7(d)
For this response,

CðsÞ ¼ 9

sðs2 þ 9Þ ð4:14Þ

This function has a pole at the origin that comes from the unit step input and two
imaginary poles that come from the system. The input pole at the origin generates
the constant forced response, and the two system poles on the imaginary axis
at �j3 generate a sinusoidal natural response whose frequency is equal to the
location of the imaginary poles. Hence, the output can be estimated as cðtÞ ¼ K1þ
K4 cosð3t � fÞ. This type of response, shown in Figure 4.7(d), is called undamped.
Note that the absence of a real part in the pole pair corresponds to an exponential
that does not decay. Mathematically, the exponential is e�0t ¼ 1.

Critically Damped Response, Figure 4.7 (e)
For this response,

CðsÞ ¼ 9

sðs2 þ 6sþ 9Þ ¼
9

sðsþ 3Þ2 ð4:15Þ

This function has a pole at the origin that comes from the unit step input and two
multiple real poles that come from the system. The input pole at the origin generates
the constant forced response, and the two poles on the real axis at �3 generate a
natural response consisting of an exponential and an exponential multiplied by time,
where the exponential frequency is equal to the location of the real poles. Hence, the
output can be estimated as cðtÞ ¼ K1 þK2e�3t þK3te�3t. This type of response, shown
in Figure 4.7(e), is called critically damped. Critically damped responses are the fastest
possible without the overshoot that is characteristic of the underdamped response.

200
C(s)

s2 + 10s + 200

1
sR(s) = 

FIGURE 4.9 System for Example 4.2
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We now summarize our observations. In this section we defined the following
natural responses and found their characteristics:

1. Overdamped responses

Poles: Two real at �s1; �s2

Natural response: Two exponentials with time constants equal to the reciprocal of
the pole locations, or

cðtÞ ¼ K1e
�s1t þK2e

�s2t

2. Underdamped responses

Poles: Two complex at �sd � jvd

Natural response: Damped sinusoid with an exponential envelope whose time
constant is equal to the reciprocal of the pole’s real part. The radian frequency of
the sinusoid, the damped frequency of oscillation, is equal to the imaginary part
of the poles, or

cðtÞ ¼ Ae�sdt cosðvdt � fÞ
3. Undamped responses

Poles: Two imaginary at �jv1

Natural response: Undamped sinusoid with radian frequency equal to the
imaginary part of the poles, or

cðtÞ ¼ Acosðv1t � fÞ
4. Critically damped responses

Poles: Two real at �s1

Natural response: One term is an exponential whose time constant is equal to the
reciprocal of the pole location. Another term is the product of time, t, and an
exponential with time constant equal to the reciprocal of the pole location, or

cðtÞ ¼ K1e
�s1t þK2te

�s1t

The step responses for the four cases of damping discussed in this section are
superimposed in Figure 4.10. Notice that the critically damped case is the division
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FIGURE 4.10 Step responses for second-order system damping cases
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between the overdamped cases and the underdamped cases and is the fastest
response without overshoot.

Skill-Assessment Exercise 4.3

PROBLEM: For each of the following transfer functions, write, by inspection, the
general form of the step response:

a. GðsÞ ¼ 400

s2 þ 12sþ 400

b. GðsÞ ¼ 900

s2 þ 90sþ 900

c. GðsÞ ¼ 225

s2 þ 30sþ 225

d. GðsÞ ¼ 625

s2 þ 625

ANSWERS:

a. cðtÞ ¼ Aþ Be�6t cosð19:08t þ fÞ
b. cðtÞ ¼ Aþ Be�78:54t þ Ce�11:46t

c. cðtÞ ¼ Aþ Be�15t þ Cte�15t

d. cðtÞ ¼ Aþ B cosð25t þ fÞ
The complete solution is located at www.wiley.com/college/nise.

In the next section, we will formalize and generalize our discussion of second-
order responses and define two specifications used for the analysis and design of
second-order systems. In Section 4.6, we will focus on the underdamped case and
derive some specifications unique to this response that we will use later for analysis
and design.

4.5 The General Second-Order System

Now that we have become familiar with second-order systems and their responses,
we generalize the discussion and establish quantitative specifications defined in such
a way that the response of a second-order system can be described to a designer
without the need for sketching the response. In this section, we define two physically
meaningful specifications for second-order systems. These quantities can be used to
describe the characteristics of the second-order transient response just as time
constants describe the first-order system response. The two quantities are called
natural frequency and damping ratio. Let us formally define them.

Natural Frequency, vn
The natural frequency of a second-order system is the frequency of oscillation of the
system without damping. For example, the frequency of oscillation of a series RLC
circuit with the resistance shorted would be the natural frequency.

4.5 The General Second-Order System 173
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Damping Ratio, z
Before we state our next definition, some explanation is in order. We have already seen
that a second-order system’s underdamped step response is characterized by damped
oscillations. Our definition is derived from the need to quantitatively describe this
dampedoscillationregardlessofthetimescale.Thus,asystemwhosetransientresponse
goes through three cycles in a millisecond before reaching the steady state would have
the same measure as a system that went through three cycles in a millennium before
reaching the steady state. For example, the underdamped curve in Figure 4.10 has an
associated measure that defines its shape. This measure remains the same even if we
change the time base from seconds to microseconds or to millennia.

A viable definition for this quantity is one that compares the exponential decay
frequency of the envelope to the natural frequency. This ratio is constant regardless
of the time scale of the response. Also, the reciprocal, which is proportional to the
ratio of the natural period to the exponential time constant, remains the same
regardless of the time base.

We define the damping ratio, z, to be

z ¼ Exponential decay frequency

Natural frequency ðrad=secondÞ ¼
1

2p

Natural period ðsecondsÞ
Exponential time constant

Let us now revise our description of the second-order system to reflect the new
definitions. The general second-order system shown in Figure 4.7(a) can be trans-
formed to show the quantities z and vn. Consider the general system

GðsÞ ¼ b

s2 þ asþ b
ð4:16Þ

Without damping, the poles would be on the jv-axis, and the response would be an
undamped sinusoid. For the poles to be purely imaginary, a ¼ 0. Hence,

GðsÞ ¼ b

s2 þ b
ð4:17Þ

By definition, the natural frequency, vn, is the frequency of oscillation of this system.
Since the poles of this system are on the jv-axis at �j

ffiffiffi
b

p
,

vn ¼
ffiffiffi
b

p
ð4:18Þ

Hence,

b ¼ v2
n ð4:19Þ

Now what is the term a in Eq. (4.16)? Assuming an underdamped system, the
complex poles have a real part, s, equal to �a=2. The magnitude of this value is then
the exponential decay frequency described in Section 4.4. Hence,

z ¼ Exponential decay frequency

Natural frequency ðrad=secondÞ ¼
jsj
vn

¼ a=2

vn
ð4:20Þ

from which
a ¼ 2zvn ð4:21Þ

Our general second-order transfer function finally looks like this:

GðsÞ ¼ v2
n

s2 þ 2zvnsþ v2
n

ð4:22Þ
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In the following example we find numerical values for z and vn by matching the
transfer function to Eq. (4.22).

Example 4.3

Finding z and vn For a Second-Order System

PROBLEM: Given the transfer function of Eq. (4.23), find z and vn.

GðsÞ ¼ 36

s2 þ 4:2sþ 36
ð4:23Þ

SOLUTION: Comparing Eq. (4.23) to (4.22), v2
n ¼ 36, from which vn ¼ 6. Also,

2zvn ¼ 4:2. Substituting the value of vn; z ¼ 0:35.

Now that we have defined z and vn, let us relate these quantities to the pole
location. Solving for the poles of the transfer function in Eq. (4.22) yields

s1; 2 ¼ �zvn � vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
ð4:24Þ

From Eq. (4.24) we see that the various cases of second-order response are a function
of z; they are summarized in Figure 4.11.4

4 The student should verify Figure 4.11 as an exercise.

FIGURE 4.11 Second-order response as a function of damping ratio
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In the following example we find the numerical value of z and determine the
nature of the transient response.

Example 4.4

Characterizing Response from the Value of z

PROBLEM: For each of the systems shown in Figure 4.12, find the value of z and
report the kind of response expected.

SOLUTION: First match the form of these systems to the forms shown in Eqs. (4.16)
and (4.22). Since a ¼ 2zvn and vn ¼

ffiffiffi
b

p
,

z ¼ a

2
ffiffiffi
b

p ð4:25Þ

Using the values of a and b from each of the systems of Figure 4.12, we find
z ¼ 1:155 for system (a), which is thus overdamped, since z > 1; z ¼ 1 for system
(b), which is thus critically damped; and z ¼ 0:894 for system (c), which is thus
underdamped, since z < 1.

Skill-Assessment Exercise 4.4

PROBLEM: For each of the transfer functions in Skill-Assessment Exercise 4.3, do
the following: (1) Find the values of z and vn; (2) characterize the nature of the
response.

ANSWERS:

a. z ¼ 0:3; vn ¼ 20; system is underdamped

b. z ¼ 1:5; vn ¼ 30; system is overdamped

c. z ¼ 1; vn ¼ 15; system is critically damped

d. z ¼ 0; vn ¼ 25; system is undamped

The complete solution is located at www.wiley.com/college/nise.

12

(a)

16

(b)

20 C(s)

(c)

s2+8s+12

C(s)C(s)

R(s)

R(s)R(s)

s2+8s+16

s2+8s+20

FIGURE 4.12 Systems for Example 4.4
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This section defined two specifications, or parameters, of second-order sys-
tems: natural frequency, vn, and damping ratio, z. We saw that the nature of the
response obtained was related to the value of z. Variations of damping ratio alone
yield the complete range of overdamped, critically damped, underdamped, and
undamped responses.

4.6 Underdamped Second-Order Systems

Now that we have generalized the second-order transfer function in terms of z and
vn, let us analyze the step response of an underdamped second-order system. Not
only will this response be found in terms of z and vn, but more specifications
indigenous to the underdamped case will be defined. The underdamped second-
order system, a common model for physical problems, displays unique behavior that
must be itemized; a detailed description of the underdamped response is necessary
for both analysis and design. Our first objective is to define transient specifications
associated with underdamped responses. Next we relate these specifications to the
pole location, drawing an association between pole location and the form of the
underdamped second-order response. Finally, we tie the pole location to system
parameters, thus closing the loop: Desired response generates required system
components.

Let us begin by finding the step response for the general second-order system
of Eq. (4.22). The transform of the response, C(s), is the transform of the input times
the transfer function, or

CðsÞ ¼ v2
n

sðs2 þ 2zvnsþ v2
nÞ

¼ K1

s
þ K2sþK3

s2 þ 2zvnsþ v2
n

ð4:26Þ

where it is assumed that z < 1 (the underdamped case). Expanding by partial
fractions, using the methods described in Section 2.2, Case 3, yields

CðsÞ ¼ 1

s
�
ðsþ zvnÞ þ zffiffiffiffiffiffiffiffi

1�z2
p vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p

ðsþ zvnÞ2 þ v2
nð1 � z2Þ ð4:27Þ

Taking the inverse Laplace transform, which is left as an exercise for the student,
produces

cðtÞ ¼ 1 � e�zvnt cos vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
t þ zffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � z2
p sin vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
t

 !

¼ 1 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p e�zvnt cosðvn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
t � fÞ

ð4:28Þ

where f ¼ tan�1ðz=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
Þ.

A plot of this response appears in Figure 4.13 for various values of z, plotted
along a time axis normalized to the natural frequency. We now see the relationship
between the value of z and the type of response obtained: The lower the value of z,
the more oscillatory the response. The natural frequency is a time-axis scale factor
and does not affect the nature of the response other than to scale it in time.
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We have defined two parameters associated with second-order systems, z and
vn. Other parameters associated with the underdamped response are rise time, peak
time, percent overshoot, and settling time. These specifications are defined as
follows (see also Figure 4.14):

1. Rise time, Tr. The time required for the waveform to go from 0.1 of the final value
to 0.9 of the final value.

2. Peak time, TP. The time required to reach the first, or maximum, peak.

3. Percent overshoot, %OS. The amount that the waveform overshoots the steady-
state, or final, value at the peak time, expressed as a percentage of the steady-state
value.

4. Settling time, Ts. The time required for the transient’s damped oscillations to
reach and stay within �2% of the steady-state value.
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FIGURE 4.13 Second-order underdamped responses for damping ratio values
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FIGURE 4.14 Second-order underdamped response specifications

178 Chapter 4 Time Response



Apago PDF Enhancer

E1C04 11/03/2010 12:25:26 Page 179

Notice that the definitions for settling time and rise time are basically the same as the
definitions for the first-order response. All definitions are also valid for systems of
order higher than 2, although analytical expressions for these parameters cannot be
found unless the response of the higher-order system can be approximated as a
second-order system, which we do in Sections 4.7 and 4.8.

Rise time, peak time, and settling time yield information about the speed of the
transient response. This information can help a designer determine if the speed and
the nature of the response do or do not degrade the performance of the system. For
example, the speed of an entire computer system depends on the time it takes for a
hard drive head to reach steady state and read data; passenger comfort depends in
part on the suspension system of a car and the number of oscillations it goes through
after hitting a bump.

We now evaluate Tp, %OS, and Ts as functions of z and vn. Later in this
chapter we relate these specifications to the location of the system poles. A precise
analytical expression for rise time cannot be obtained; thus, we present a plot and a
table showing the relationship between z and rise time.

Evaluation of Tp
Tp is found by differentiating c(t) in Eq. (4.28) and finding the first zero crossing
after t ¼ 0. This task is simplified by ‘‘differentiating’’ in the frequency domain
by using Item 7 of Table 2.2. Assuming zero initial conditions and using Eq. (4.26),
we get

L½ _cðtÞ� ¼ sCðsÞ ¼ v2
n

s2 þ 2zvnsþ v2
n

ð4:29Þ

Completing squares in the denominator, we have

L½ _cðtÞ� ¼ v2
n

ðsþ zvnÞ2 þ v2
nð1 � z2Þ ¼

vnffiffiffiffiffiffiffiffi
1�z2

p vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p

ðsþ zvnÞ2 þ v2
nð1 � z2Þ ð4:30Þ

Therefore,

_cðtÞ ¼ vnffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p e�zvntsinvn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
t ð4:31Þ

Setting the derivative equal to zero yields

vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
t ¼ np ð4:32Þ

or

t ¼ np

vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p ð4:33Þ

Each value of n yields the time for local maxima or minima. Letting n ¼ 0 yields
t ¼ 0, the first point on the curve in Figure 4.14 that has zero slope. The first peak,
which occurs at the peak time, Tp, is found by letting n ¼ 1 in Eq. (4.33):

Tp ¼ p

vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p ð4:34Þ
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Evaluation of%OS
From Figure 4.14 the percent overshoot, %OS, is given by

%OS ¼ cmax � cfinal

cfinal
� 100 ð4:35Þ

The term cmax is found by evaluating c(t) at the peak time, c(Tp). Using Eq. (4.34) for
Tp and substituting into Eq. (4.28) yields

cmax ¼ cðTpÞ ¼ 1 � e�ðzp=
ffiffiffiffiffiffiffiffi
1�z2

p
Þ cos pþ zffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � z2
p sin p

 !

¼ 1 þ e�ðzp=
ffiffiffiffiffiffiffiffi
1�z2

p
Þ

ð4:36Þ

For the unit step used for Eq. (4.28),

cfinal ¼ 1 ð4:37Þ
Substituting Eqs. (4.36) and (4.37) into Eq. (4.35), we finally obtain

%OS ¼ e�ðzp=
ffiffiffiffiffiffiffiffi
1�z2

p
Þ � 100 ð4:38Þ

Notice that the percent overshoot is a function only of the damping ratio, z.
Whereas Eq. (4.38) allows one to find %OS given z, the inverse of the equation

allows one to solve for z given %OS. The inverse is given by

z ¼ �lnð%OS=100Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ln2ð%OS=100Þ

q ð4:39Þ

The derivation of Eq. (4.39) is left as an exercise for the student. Equation (4.38) (or,
equivalently, (4.39)) is plotted in Figure 4.15.
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FIGURE 4.15 Percent overshoot versus damping ratio
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Evaluation of Ts
In order to find the settling time, we must find the time for which c(t) in Eq. (4.28)
reaches and stays within �2% of the steady-state value, cfinal. Using our definition,
the settling time is the time it takes for the amplitude of the decaying sinusoid in
Eq. (4.28) to reach 0.02, or

e�zvnt
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � z2
p ¼ 0:02 ð4:40Þ

This equation is a conservative estimate, since we are assuming that cos

ðvn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
t � fÞ ¼ 1 at the settling time. Solving Eq. (4.40) for t, the settling time is

Ts ¼ �lnð0:02
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p
Þ

zvn
ð4:41Þ

You can verify that the numerator of Eq. (4.41) varies from 3.91 to 4.74 as z varies
from 0 to 0.9. Let us agree on an approximation for the settling time that will be used
for all values of z; let it be

Ts ¼ 4

zvn
ð4:42Þ

Evaluation of Tr
A precise analytical relationship between rise time and damping ratio, z, cannot be
found. However, using a computer and Eq. (4.28), the rise time can be found. We
first designate vnt as the normalized time variable and select a value for z. Using the
computer, we solve for the values of vnt that yield cðtÞ ¼ 0:9 and cðtÞ ¼ 0:1.
Subtracting the two values of vnt yields the normalized rise time, vnTr, for that
value of z. Continuing in like fashion with other values of z, we obtain the results
plotted in Figure 4.16.5 Let us look at an example.
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FIGURE 4.16 Normalized rise
time versus damping ratio for
a second-order underdamped
response

5 Figure 4.16 can be approximated by the following polynomials: vnTr ¼ 1:76z3 � 0:417z2 þ 1:039z þ 1
(maximum error less than 1

2 % for 0 < z < 0:9), and z ¼ 0:115ðvnTrÞ3 � 0:883ðvnTrÞ2 þ 2:504ðvnTrÞ �
1:738 (maximum error less than 5% for 0:1 < z < 0:9). The polynomials were obtained using MATLAB’s
polyfit function.
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Example 4.5

Finding Tp, %OS, Ts, and Tr from a Transfer Function

PROBLEM: Given the transfer function

GðsÞ ¼ 100

s2 þ 15sþ 100
ð4:43Þ

find Tp, %OS, Ts, and Tr.

SOLUTION: vn and z are calculated as 10 and 0.75, respectively. Now substitute
z and vn into Eqs. (4.34), (4.38), and (4.42) and find, respectively, that
Tp ¼ 0:475 second, %OS ¼ 2:838, and Ts ¼ 0:533 second. Using the table
in Figure 4.16, the normalized rise time is approximately 2.3 seconds. Dividing byvn

yields Tr ¼ 0:23 second. This problem demonstrates that we can find Tp, %OS, Ts,
and Tr without the tedious task of taking an inverse Laplace transform, plotting the
output response, and taking measurements from the plot.

We now have expressions that relate peak time, percent over-
shoot, and settling time to the natural frequency and the damping
ratio. Now let us relate these quantities to the location of the poles
that generate these characteristics.

The pole plot for a general, underdamped second-order sys-
tem, previously shown in Figure 4.11, is reproduced and expanded in
Figure 4.17 for focus. We see from the Pythagorean theorem that the
radial distance from the origin to the pole is the natural frequency,
vn, and the cos u ¼ z.

Now, comparing Eqs. (4.34) and (4.42) with the pole location,
we evaluate peak time and settling time in terms of the pole location.
Thus,

Tp ¼ p

vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

p ¼ p

vd
ð4:44Þ

Ts ¼ 4

zvn
¼ p

sd
ð4:45Þ

where vd is the imaginary part of the pole and is called the damped frequency of
oscillation, and sd is the magnitude of the real part of the pole and is the exponential
damping frequency.
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FIGURE 4.17 Pole plot for an underdamped
second-order system

Virtual Experiment 4.2
Second-Order

System Response

Put theory into practice studying
the effect that natural frequency
and damping ratio have on
controlling the speed response
of the Quanser Linear Servo in
LabVIEW. This concept is ap-
plicable to automobile cruise
controls or speed controls of
subways or trucks.

Virtual experiments are found
on WileyPLUS.

182 Chapter 4 Time Response



Apago PDF Enhancer

E1C04 11/03/2010 12:25:28 Page 183

Equation (4.44) shows that Tp is inversely proportional to the imaginary
part of the pole. Since horizontal lines on the s-plane are lines of constant imaginary
value, they are also lines of constant peak time. Similarly, Eq. (4.45) tells us that
settling time is inversely proportional to the real part of the pole. Since vertical lines
on the s-plane are lines of constant real value, they are also lines of constant settling
time. Finally, since z ¼ cos u, radial lines are lines of constant z. Since percent
overshoot is only a function of z, radial lines are thus lines of constant percent
overshoot, %OS. These concepts are depicted in Figure 4.18, where lines of constant
Tp, Ts, and %OS are labeled on the s-plane.

At this point, we can understand the significance of Figure 4.18 by examining
the actual step response of comparative systems. Depicted in Figure 4.19(a) are the
step responses as the poles are moved in a vertical direction, keeping the real part the
same. As the poles move in a vertical direction, the frequency increases, but the
envelope remains the same since the real part of the pole is not changing. The figure
shows a constant exponential envelope, even though the sinusoidal response is
changing frequency. Since all curves fit under the same exponential decay curve, the
settling time is virtually the same for all waveforms. Note that as overshoot increases,
the rise time decreases.

Let us move the poles to the right or left. Since the imaginary part is now
constant, movement of the poles yields the responses of Figure 4.19(b). Here the
frequency is constant over the range of variation of the real part. As the poles move
to the left, the response damps out more rapidly, while the frequency remains the
same. Notice that the peak time is the same for all waveforms because the imaginary
part remains the same.

Moving the poles along a constant radial line yields the responses shown in
Figure 4.19(c). Here the percent overshoot remains the same. Notice also that the
responses look exactly alike, except for their speed. The farther the poles are from
the origin, the more rapid the response.

We conclude this section with some examples that demonstrate the relation-
ship between the pole location and the specifications of the second-order under-
damped response. The first example covers analysis. The second example is a simple
design problem consisting of a physical system whose component values we want to
design to meet a transient response specification.

%OS2

%OS1

ωj

σ

s-plane

Ts2
Ts1

Tp2

Tp1

ω

FIGURE 4.18 Lines of
constant peak time, Tp,
settling time, Ts, and percent
overshoot, %OS. Note:
Ts2 < Ts1 ; Tp2 < Tp1;
%OS1 < %OS2.
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Example 4.6

Finding Tp,%OS, and Ts from Pole Location

PROBLEM: Given the pole plot shown in Figure 4.20, find z; vn; Tp;
%OS, and Ts.

SOLUTION: The damping ratio is given by z ¼ cos u ¼ cos½arctan
ð7=3Þ� ¼ 0:394. The natural frequency, vn, is the radial distance

from the origin to the pole, or vn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72 þ 32

p
¼ 7:616. The peak

time is

Tp ¼ p

vd
¼ p

7
¼ 0:449 second ð4:46Þ

The percent overshoot is

%OS ¼ e�ðzp=
ffiffiffiffiffiffiffiffi
1�z2

p
Þ � 100 ¼ 26% ð4:47Þ

The approximate settling time is

Ts ¼ 4

sd
¼ 4

3
¼ 1:333 seconds ð4:48Þ
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FIGURE 4.19 Step responses
of second-order underdamped systems
as poles move: a. with constant real
part; b. with constant imaginary part;
c. with constant damping ratio
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FIGURE 4.20 Pole plot for Example 4.6
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Students who are using MATLAB should now run ch4p1 in Appendix B.
You will learn how to generate a second-order polynomial from
two complex poles as well as extract and use the coefficients of
the polynomial to calculate Tp, %OS, and Ts. This exercise uses
MATLAB to solve the problem in Example 4.6.

Example 4.7

Transient Response Through Component Design

PROBLEM: Given the system shown in Figure 4.21, find J and D to yield 20%
overshoot and a settling time of 2 seconds for a step input of torque T(t).

SOLUTION: First, the transfer function for the system is

GðsÞ ¼ 1=J

s2 þD

J
sþK

J

ð4:49Þ

From the transfer function,

vn ¼
ffiffiffiffi
K

J

r
ð4:50Þ

and

2zvn ¼ D

J
ð4:51Þ

But, from the problem statement,

Ts ¼ 2 ¼ 4

zvn
ð4:52Þ

or zvn ¼ 2. Hence,

2zvn ¼ 4 ¼ D

J
ð4:53Þ

Also, from Eqs. (4.50) and (4.52),

z ¼ 4

2vn
¼ 2

ffiffiffiffi
J

K

r
ð4:54Þ

From Eq. (4.39), a 20% overshoot implies z ¼ 0:456. Therefore, from Eq. (4.54),

z ¼ 2

ffiffiffiffi
J

K

r
¼ 0:456 ð4:55Þ

J

D

T(t) θ

K = 5 N-m/rad

(t)

FIGURE 4.21 Rotational mechanical system for Example 4.7
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Hence,
J

K
¼ 0:052 ð4:56Þ

From the problem statement, K ¼ 5 N-m/rad. Combining this value with Eqs.
(4.53) and (4.56), D¼ 1.04 N-m-s/rad, and J ¼ 0:26 kg-m2.

Second-Order Transfer Functions via Testing
Just as we obtained the transfer function of a first-order system experimentally, we
can do the same for a system that exhibits a typical underdamped second-order
response. Again, we can measure the laboratory response curve for percent over-
shoot and settling time, from which we can find the poles and hence the denomina-
tor. The numerator can be found, as in the first-order system, from a knowledge of
the measured and expected steady-state values. A problem at the end of the chapter
illustrates the estimation of a second-order transfer function from the step response.

Skill-Assessment Exercise 4.5

PROBLEM: Find z; vn; Ts; Tp; Tr, and %OS for a system whose

transfer function is GðsÞ ¼ 361

s2 þ 16sþ 361
.

ANSWERS:

z ¼ 0:421; vn ¼ 19; Ts ¼ 0:5 s; Tp ¼ 0:182 s; Tr ¼ 0:079 s; and %OS ¼ 23:3%:

The complete solution is located at www.wiley.com/college/nise.

Now that we have analyzed systems with two poles, how does the addition of
another pole affect the response? We answer this question in the next section.

4.7 System Response with Additional Poles

In the last section, we analyzed systems with one or two poles. It must be emphasized
that the formulas describing percent overshoot, settling time, and peak time were
derived only for a system with two complex poles and no zeros. If a system such as
that shown in Figure 4.22 has more than two poles or has zeros, we cannot use the
formulas to calculate the performance specifications that we derived. However,
under certain conditions, a system with more than two poles or with zeros can be

TryIt 4.1

Use the following MATLAB
statements to calculate the
answers to Skill-Assessment
Exercise 4.5. Ellipses mean
code continues on next line.

numg=361;
deng=[1 16 361];
omegan=sqrt(deng(3)...
/deng(1))

zeta=(deng(2)/deng(1))...
/(2*omegan)

Ts=4/(zeta*omegan)
Tp=pi/(omegan*sqrt...
(1-zeta^2))

pos=100*exp(-zeta*...
pi/sqrt(1-zeta^2))

Tr=(1.768*zeta^3 -...
0.417*zeta^2þ1.039*...
zetaþ1)/omegan
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