and using Eq. (2.123) for M_3 ,

$$-f_{\nu_3}sX_1(s) - f_{\nu_4}sX_2(s) + [M_3s^2 + (f_{\nu_3} + f_{\nu_4})s]X_3(s) = 0$$
(2.126)

Equations (2.124) through (2.126) are the equations of motion. We can solve them for any displacement, $X_1(s)$, $X_2(s)$, or $X_3(s)$, or transfer function.

Skill-Assessment Exercise 2.8

PROBLEM: Find the transfer function, $G(s) = X_2(s)/F(s)$, for the translational mechanical system shown in Figure 2.21.

2.6 Rotational Mechanical System Transfer Functions

Having covered electrical and translational mechanical systems, we now move on to consider rotational mechanical systems. Rotational mechanical systems are handled the same way as translational mechanical systems, except that torque replaces force and angular displacement replaces translational displacement. The mechanical components for rotational systems are the same as those for translational systems, except that the components undergo rotation instead of translation. Table 2.5 shows the components along with the relationships between torque and angular velocity, as well as angular displacement. Notice that the symbols for the

Chapter 2 Modeling in the Frequency Domain

TABLE 2.5 Torque-angular velocity, torque-angular displacement, and impedance rotational relationships for springs, viscous dampers, and inertia

Component	Torque-angular velocity	Torque-angular displacement	Impedence $Z_M(s) = T(s)/\theta(s)$
$\begin{array}{c} T(t) \ \theta(t) \\ \hline \\ 0000 \\ K \end{array}$	$T(t) = K \int_0^t \omega(\tau) d\tau$	$T(t) = K\theta(t)$	K
Viscous $T(t) \theta(t)$ damper D	$T(t) = D\omega(t)$	$T(t) = D \frac{d\theta(t)}{dt}$	Ds
$T(t) \ \theta(t)$ Inertia J	$T(t) = J \frac{d\omega(t)}{dt}$	$T(t) = J \frac{d^2 \theta(t)}{dt^2}$	Js^2

Note: The following set of symbols and units is used throughout this book: T(t) - N-m (newton-meters), $\theta(t) - \text{rad}(\text{radians}), \omega(t) - \text{rad}/\text{s}(\text{radians}/\text{second}), K - \text{N-m/rad}(\text{newton-meters}/\text{radian}), D - \text{N-m-s/rad}(\text{newton-meters-seconds}/\text{radian}), J - \text{kg-m}^2(\text{kilograms-meters}^2 - \text{newton-meters}-\text{seconds}^2/\text{radian}).$

components look the same as translational symbols, but they are undergoing rotation and not translation.

Also notice that the term associated with the mass is replaced by inertia. The values of K, D, and J are called *spring constant, coefficient of viscous friction*, and *moment of inertia*, respectively. The impedances of the mechanical components are also summarized in the last column of Table 2.5. The values can be found by taking the Laplace transform, assuming zero initial conditions, of the torque-angular displacement column of Table 2.5.

The concept of degrees of freedom carries over to rotational systems, except that we test a point of motion by *rotating* it while holding still all other points of motion. The number of points of motion that can be rotated while all others are held still equals the number of equations of motion required to describe the system.

Writing the equations of motion for rotational systems is similar to writing them for translational systems; the only difference is that the free-body diagram consists of torques rather than forces. We obtain these torques using superposition. First, we rotate a body while holding all other points still and place on its free-body diagram all torques due to the body's own motion. Then, holding the body still, we rotate adjacent points of motion one at a time and add the torques due to the adjacent motion to the free-body diagram. The process is repeated for each point of motion. For each free-body diagram, these torques are summed and set equal to zero to form the equations of motion.

Two examples will demonstrate the solution of rotational systems. The first one uses free-body diagrams; the second uses the concept of impedances to write the equations of motion by inspection.

Example 2.19

Transfer Function—Two Equations of Motion

PROBLEM: Find the transfer function, $\theta_2(s)/T(s)$, for the rotational system shown in Figure 2.22(*a*). The rod is supported by bearings at either end and is undergoing torsion. A torque is applied at the left, and the displacement is measured at the right.

FIGURE 2.22 a. Physical system; b. schematic; c. block diagram

SOLUTION: First, obtain the schematic from the physical system. Even though torsion occurs throughout the rod in Figure 2.22(a),⁹ we approximate the system by assuming that the torsion acts like a spring concentrated at one particular point in the rod, with an inertia J_1 to the left and an inertia J_2 to the right.¹⁰ We also assume that the damping inside the flexible shaft is negligible. The schematic is shown in Figure 2.22(b). There are two degrees of freedom, since each inertia can be rotated while the other is held still. Hence, it will take two simultaneous equations to solve the system.

Next, draw a free-body diagram of J_1 , using superposition. Figure 2.23(*a*) shows the torques on J_1 if J_2 is held still and J_1 rotated. Figure 2.23(*b*) shows the torques on J_1 if J_1 is held still and J_2 rotated. Finally, the sum of Figures 2.23(*a*) and 2.23(*b*) is shown in Figure 2.23(*c*), the final free-body diagram for J_1 . The same process is repeated in Figure 2.24 for J_2 .

FIGURE 2.23 a. Torques on J_1 due only to the motion of J_1 ; **b.** torques on J_1 due only to the motion of J_2 ; **c.** final free-body diagram for J_1

⁹In this case the parameter is referred to as a *distributed* parameter.

¹⁰ The parameter is now referred to as a *lumped* parameter.

Summing torques respectively from Figures 2.23(c) and 2.24(c) we obtain the equations of motion,

$$(J_1s^2 + D_1s + K)\theta_1(s) - K\theta_2(s) = T(s)$$
(2.127a)

$$-K\theta_1(s) + (J_2s^2 + D_2s + K)\theta_2(s) = 0$$
(2.127b)

from which the required transfer function is found to be

$$\frac{\theta_2(s)}{T(s)} = \frac{K}{\Delta} \tag{2.128}$$

as shown in Figure 2.22(c), where

$$\Delta = \begin{vmatrix} (J_1 s^2 + D_1 s + K) & -K \\ -K & (J_2 s^2 + D_2 s + K) \end{vmatrix}$$

Notice that Eq. (2.127) have that now well-known form

 $\begin{bmatrix} \operatorname{Sum of} \\ \operatorname{impedances} \\ \operatorname{connected} \\ \operatorname{to the motion} \\ \operatorname{at} \theta_1 \end{bmatrix} \theta_1(s) - \begin{bmatrix} \operatorname{Sum of} \\ \operatorname{impedances} \\ \operatorname{between} \\ \theta_1 \operatorname{and} \theta_2 \end{bmatrix} \theta_2(s) = \begin{bmatrix} \operatorname{Sum of} \\ \operatorname{applied torques} \\ \operatorname{at} \theta_1 \end{bmatrix}$ (2.129a) $- \begin{bmatrix} \operatorname{Sum of} \\ \operatorname{impedances} \\ \operatorname{between} \\ \theta_1(s) + \begin{bmatrix} \operatorname{Sum of} \\ \operatorname{impedances} \\ \operatorname{connected} \\ \operatorname{to the motion} \end{bmatrix} \theta_2(s) = \begin{bmatrix} \operatorname{Sum of} \\ \operatorname{applied torques} \\ \operatorname{at} \theta_2 \end{bmatrix}$ (2.129b)

Example 2.20

Equations of Motion By Inspection

PROBLEM: Write, but do not solve, the Laplace transform of the equations of motion for the system shown in Figure 2.25.

FIGURE 2.24 a. Torques on J_2 due only to the motion of J_2 ; b. torques on J_2 due only to the motion of J_1 ; c. final free-body diagram for J_2

TryIt 2.9 Use the following MATLAB and Symbolic Math Toolbox

statements to help you get

FIGURE 2.25 Three-degreesof-freedom rotational system

SOLUTION: The equations will take on the following form, similar to electrical mesh equations:

$$\begin{bmatrix} \operatorname{Sum of} & \operatorname{impedances} \\ \operatorname{connected} \\ \operatorname{to the motion} & \operatorname{at} \theta_1 & \theta_1(s) = \begin{bmatrix} \operatorname{Sum of} & \operatorname{impedances} \\ \operatorname{between} & \theta_1 & \operatorname{ad} \theta_2 \end{bmatrix} \theta_2(s)$$

$$= \begin{bmatrix} \operatorname{Sum of} & \operatorname{impedances} \\ \operatorname{between} & \theta_1 & \operatorname{ad} \theta_3 \end{bmatrix} \theta_3(s) = \begin{bmatrix} \operatorname{Sum of} & \operatorname{applied torques} \\ \operatorname{at} \theta_1 & \theta_1 & \theta_3 \end{bmatrix} \theta_1(s) + \begin{bmatrix} \operatorname{Sum of} & \operatorname{impedances} \\ \operatorname{impedances} & \operatorname{connected} \\ \operatorname{to the motion} & \operatorname{at} \theta_2 \end{bmatrix} \theta_2(s)$$

$$= \begin{bmatrix} \operatorname{Sum of} & \operatorname{impedances} \\ \operatorname{between} & \theta_2 & \operatorname{ad} \theta_3 \end{bmatrix} \theta_2(s)$$

$$= \begin{bmatrix} \operatorname{Sum of} & \operatorname{impedances} \\ \operatorname{between} & \theta_2 & \operatorname{ad} \theta_3 \end{bmatrix} \theta_3(s) = \begin{bmatrix} \operatorname{Sum of} & \operatorname{applied torques} \\ \operatorname{at} \theta_2 & \operatorname{ad} \theta_3 \end{bmatrix} \theta_3(s) = \begin{bmatrix} \operatorname{Sum of} & \operatorname{applied torques} \\ \operatorname{at} \theta_2 & \operatorname{ad} \theta_3 \end{bmatrix} \theta_2(s)$$

$$= \begin{bmatrix} \operatorname{Sum of} & \operatorname{impedances} \\ \operatorname{between} & \theta_2 & \operatorname{ad} \theta_3 \end{bmatrix} \theta_2(s)$$

$$= \begin{bmatrix} \operatorname{Sum of} & \operatorname{impedances} \\ \operatorname{between} & \theta_2 & \operatorname{ad} \theta_3 \end{bmatrix} \theta_2(s)$$

$$= \begin{bmatrix} \operatorname{Sum of} & \operatorname{impedances} \\ \operatorname{between} & \theta_2 & \operatorname{ad} \theta_3 \end{bmatrix} \theta_2(s)$$

$$= \begin{bmatrix} \operatorname{Sum of} & \operatorname{impedances} \\ \operatorname{between} & \theta_2 & \operatorname{ad} \theta_3 \end{bmatrix} \theta_2(s)$$

$$= \begin{bmatrix} \operatorname{Sum of} & \operatorname{impedances} \\ \operatorname{between} & \theta_2 & \operatorname{ad} \theta_3 \end{bmatrix} \theta_2(s)$$

$$= \begin{bmatrix} \operatorname{Sum of} & \operatorname{impedances} \\ \operatorname{between} & \theta_2 & \operatorname{ad} \theta_3 \end{bmatrix} \theta_2(s)$$

$$= \begin{bmatrix} \operatorname{Sum of} & \operatorname{impedances} \\ \operatorname{between} & \theta_2 & \operatorname{ad} \theta_3 \end{bmatrix} \theta_2(s)$$

$$= \begin{bmatrix} \operatorname{Sum of} & \operatorname{impedances} \\ \operatorname{between} & \theta_2 & \operatorname{ad} \theta_3 \end{bmatrix} \theta_3(s) = \begin{bmatrix} \operatorname{Sum of} & \operatorname{applied torques} \\ \operatorname{at} \theta_3 \end{bmatrix}$$

Hence,

$$\begin{aligned} (J_1s^2 + D_1s + K)\theta_1(s) & -K\theta_2(s) & -0\theta_3(s) = T(s) \\ -K\theta_1(s) + (J_2s^2 + D_2s + K)\theta_2(s) & -D_2s\theta_3(s) = 0 \\ -0\theta_1(s) & -D_2s\theta_2(s) + (J_3s^2 + D_3s + D_2s)\theta_3(s) = 0 \\ & (2.131a, b, c) \end{aligned}$$

Skill-Assessment Exercise 2.9

PROBLEM: Find the transfer function, $G(s) = \theta_2(s)/T(s)$, for the rotational mechanical system shown in Figure 2.26.

2.7 Transfer Functions for Systems with Gears

Now that we are able to find the transfer function for rotational systems, we realize that these systems, especially those driven by motors, are rarely seen without associated gear trains driving the load. This section covers this important topic.

Gears provide mechanical advantage to rotational systems. Anyone who has ridden a 10-speed bicycle knows the effect of gearing. Going uphill, you shift to provide more torque and less speed. On the straightaway, you shift to obtain more speed and less torque. Thus, gears allow you to match the drive system and the load—a trade-off between speed and torque.

For many applications, gears exhibit *backlash*, which occurs because of the loose fit between two meshed gears. The drive gear rotates through a small angle before making contact with the meshed gear. The result is that the angular rotation of the output gear does not occur until a small angular rotation of the input gear has occurred. In this section, we idealize the behavior of gears and assume that there is no backlash.

The linearized interaction between two gears is depicted in Figure 2.27. An input gear with radius r_1 and N_1 teeth is rotated through angle $\theta_1(t)$ due to a torque, $T_1(t)$. An output gear with radius r_2 and N_2 teeth responds by rotating through angle $\theta_2(t)$ and delivering a torque, $T_2(t)$. Let us now find the relationship between the rotation of Gear 1, $\theta_1(t)$, and Gear 2, $\theta_2(t)$.

From Figure 2.27, as the gears turn, the distance traveled along each gear's circumference is the same. Thus,

1

$$r_1\theta_1 = r_2\theta_2 \tag{2.132}$$

FIGURE 2.27 A gear system