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and using Eq. (2.123) for M3,

� fv3
sX1ðsÞ � fv4

sX2ðsÞ þ M3s
2 þ ðfv3

þ fv4
Þs� �

X3ðsÞ ¼ 0 ð2:126Þ

Equations (2.124) through (2.126) are the equations of motion. We can solve them
for any displacement, X1ðsÞ; X2ðsÞ;  or X3ðsÞ, or transfer function.

Skill-Assessment Exercise 2.8

PROBLEM: Find the transfer function, GðsÞ ¼ X2ðsÞ=FðsÞ, for the translational
mechanical system shown in Figure 2.21.

ANSWER: GðsÞ ¼ 3sþ 1

sðs3 þ 7s2 þ 5sþ 1Þ
The complete solution is at www.wiley.com/college/nise.

2.6 Rotational Mechanical System
Transfer Functions

Having covered electrical and translational mechanical systems, we now move on
to consider rotational mechanical systems. Rotational mechanical systems are
handled the same way as translational mechanical systems, except that torque
replaces force and angular displacement replaces translational displacement. The
mechanical components for rotational systems are the same as those for transla-
tional systems, except that the components undergo rotation instead of translation.
Table 2.5 shows the components along with the relationships between torque and
angular velocity, as well as angular displacement. Notice that the symbols for the

fv1
= 1 N-s/m

fv2
= 1 N-s/m fv4

= 1 N-s/m
fv3

= 1 N-s/m

K= 1 N/m

M1 = 1 kg M2 = 1 kg

x1(t)

f (t)

x2(t)

FIGURE 2.21 Translational
mechanical system for Skill-
Assessment Exercise 2.8
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components look the same as translational symbols, but they are undergoing
rotation and not translation.

Also notice that the term associated with the mass is replaced by inertia. The
values of K, D, and J are called spring constant, coefficient of viscous friction, and
moment of inertia, respectively. The impedances of the mechanical components are
also summarized in the last column of Table 2.5. The values can be found by taking
the Laplace transform, assuming zero initial conditions, of the torque-angular
displacement column of Table 2.5.

The concept of degrees of freedom carries over to rotational systems, except
that we test a point of motion by rotating it while holding still all other points of
motion. The number of points of motion that can be rotated while all others are
held still equals the number of equations of motion required to describe the
system.

Writing the equations of motion for rotational systems is similar to writing
them for translational systems; the only difference is that the free-body diagram
consists of torques rather than forces. We obtain these torques using superposition.
First, we rotate a body while holding all other points still and place on its free-body
diagram all torques due to the body’s own motion. Then, holding the body still, we
rotate adjacent points of motion one at a time and add the torques due to the
adjacent motion to the free-body diagram. The process is repeated for each point of
motion. For each free-body diagram, these torques are summed and set equal to zero
to form the equations of motion.

Two examples will demonstrate the solution of rotational systems. The first one
uses free-body diagrams; the second uses the concept of impedances to write the
equations of motion by inspection.

TABLE 2.5 Torque-angular velocity, torque-angular displacement, and impedance rotational
relationships for springs, viscous dampers, and inertia

Component
Torque-angular

velocity
Torque-angular
displacement

Impedence
ZM(s) ¼ T(s)=u(s)

K

Spring
T(t)    (t)θ

TðtÞ ¼ K
R t

0 vðtÞdt TðtÞ ¼ KuðtÞ K

D

Viscous
damper

T(t)    (t)θ

TðtÞ ¼ DvðtÞ TðtÞ ¼ D
duðtÞ
dt

Ds

J

Inertia
T(t)    (t)θ

TðtÞ ¼ J
dvðtÞ
dt

TðtÞ ¼ J
d2uðtÞ
dt2

Js2

Note: The following set of symbols and units is used throughout this book: TðtÞ � N-m ðnewton-metersÞ,
uðtÞ � rad ðradiansÞ, vðtÞ � rad/sðradians/secondÞ, K � N-m/radðnewton- meters/radianÞ, D� N-m-s/rad
ðnewton- meters-seconds/radianÞ. J � kg-m2ðkilograms-meters2 � newton-meters-seconds2/radianÞ.
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Example 2.19

Transfer Function—Two Equations of Motion

PROBLEM: Find the transfer function, u2ðsÞ=TðsÞ, for the rotational system shown
in Figure 2.22(a). The rod is supported by bearings at either end and is undergoing
torsion. A torque is applied at the left, and the displacement is measured at the
right.

SOLUTION: First, obtain the schematic from the physical system. Even though
torsion occurs throughout the rod in Figure 2.22(a),9 we approximate the system
by assuming that the torsion acts like a spring concentrated at one particular point
in the rod, with an inertia J1 to the left and an inertia J2 to the right.10 We also
assume that the damping inside the flexible shaft is negligible. The schematic is
shown in Figure 2.22(b). There are two degrees of freedom, since each inertia can
be rotated while the other is held still. Hence, it will take two simultaneous
equations to solve the system.

Next, draw a free-body diagram of J1, using superposition. Figure 2.23(a)
shows the torques on J1 if J2 is held still and J1 rotated. Figure 2.23(b) shows the
torques on J1 if J1 is held still and J2 rotated. Finally, the sum of Figures 2.23(a) and
2.23(b) is shown in Figure 2.23(c), the final free-body diagram for J1. The same
process is repeated in Figure 2.24 for J2.

θ 1(t) θ 2(t)

D1 K D2

T(t)

(b)

θ 1(t)T(t)       θ 2(t)

Bearing
D1

Bearing
D2Torsion

(a)

J2
J1 J2 J1

K
Δ

(c)

T(s) 2(s)θ
FIGURE 2.22 a. Physical
system; b. schematic;
c. block diagram

9 In this case the parameter is referred to as a distributed parameter.
10 The parameter is now referred to as a lumped parameter.

(a)

J1

K

T(s)

(b) (c)

D1sθ 1(s)
θ 1(s)

Kθ 2(s)

Kθ 1(s)
D1sθ1(s)

J1s2θ 1(s)T(s)

Directionθ1(s)

J1 J1

J1s2θ 1(s)

Kθ 2(s)

Directionθ 1(s)Directionθ 1(s)

FIGURE 2.23 a. Torques on
J1 due only to the motion of J1;
b. torques on J1 due only to the
motion of J2; c. final free-body
diagram for J1
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Summing torques respectively from Figures 2.23(c) and 2.24(c) we obtain the
equations of motion,

ðJ1s
2 þD1sþKÞu1ðsÞ �Ku2ðsÞ ¼ TðsÞ ð2:127aÞ

�Ku1ðsÞ þ ðJ2s
2 þD2sþKÞu2ðsÞ ¼ 0 ð2:127bÞ

from which the required transfer function is found to be

u2ðsÞ
TðsÞ ¼

K

D
ð2:128Þ

as shown in Figure 2.22(c), where

D ¼
�����
ðJ1s2 þD1sþKÞ �K

�K ðJ2s2 þD2sþKÞ

�����
Notice that Eq. (2.127) have that now well-known form

Sum of
impedances
connected

to the motion
at u1

2
66664

3
77775u1ðsÞ �

Sum of
impedances

between
u1 and u2

2
664

3
775u2ðsÞ ¼

Sum of
applied torques

at u1

2
4

3
5 ð2:129aÞ

�
Sum of

impedances
between
u1 and u2

2
664

3
775u1ðsÞ þ

Sum of
impedances
connected

to the motion
at u2

2
66664

3
77775u2ðsÞ ¼

Sum of
applied torques

at u2

2
4

3
5 ð2:129bÞ

Example 2.20

Equations of Motion By Inspection

PROBLEM: Write, but do not solve, the Laplace transform of the equations of
motion for the system shown in Figure 2.25.

FIGURE 2.24 a.Torques on
J2 due only to the motion of
J2; b. torques on J2 due only
to the motion of J1; c. final
free-body diagram for J2

θ2(s)

D2s

Kθ

J 2

θ 2(s)

J2s2

(a) (b) (c)

θ2(s) θ 2(s)

θ2(s)

2(s)

Kθ 1(s)

J2

Kθ 1(s)

θ2(s)

D2s

J2s2

θ 2(s)

Kθ 2(s)

DirectionDirectionDirection

J2

FIGURE 2.25 Three-degrees-
of-freedom rotational
system

θ1(t) T(t) θ 2(t) θ 3(t)

D1
K D2 D3

J2J1 J3

TryIt 2.9

Use the following MATLAB
and Symbolic Math Toolbox
statements to help you get
Eq. (2.128).

syms s J1 D1 K T J2 D2...
theta1 theta2

A=[(J1*s^2+D1*s+K) �K
�K (J2*s^2+D2*s+K)];

B=[theta1
theta2];

C=[T
0];

B=inv(A)*C;
theta2=B(2);
’theta2’
pretty(theta2)
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SOLUTION: The equations will take on the following form, similar to electrical
mesh equations:

Sum of

impedances

connected

to the motion

at u1

2
666664

3
777775
u1ðsÞ �

Sum of

impedances

between

u1 and u2

2
6664

3
7775u2ðsÞ

�
Sum of

impedances

between

u1 and u3

2
6664

3
7775u3ðsÞ ¼

Sum of

applied torques

at u1

2
4

3
5

ð2:130aÞ

�
Sum of

impedances

between

u1 and u2

2
6664

3
7775u1ðsÞ þ

Sum of

impedances

connected

to the motion

at u2

2
666664

3
777775
u2ðsÞ

�
Sum of

impedances

between

u2 and u3

2
6664

3
7775u3ðsÞ ¼

Sum of

applied torques

at u2

2
4

3
5

ð2:130bÞ

�
Sum of

impedances

between

u1 and u3

2
6664

3
7775u1ðsÞ �

Sum of

impedances

between

u2 and u3

2
6664

3
7775u2ðsÞ

þ

Sum of

impedances

connected

to the motion

at u3

2
666664

3
777775
u3ðsÞ ¼

Sum of

applied torques

at u3

2
4

3
5

ð2:130cÞ

Hence,

ðJ1s2 þD1sþKÞu1ðsÞ �Ku2ðsÞ �0u3ðsÞ ¼ TðsÞ
�Ku1ðsÞ þðJ2s2 þD2sþKÞu2ðsÞ �D2su3ðsÞ ¼ 0

�0u1ðsÞ �D2su2ðsÞ þðJ3s2 þD3sþD2sÞu3ðsÞ ¼ 0

ð2:131a; b; cÞ
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Skill-Assessment Exercise 2.9

PROBLEM: Find the transfer function, GðsÞ ¼ u2ðsÞ=TðsÞ, for the rotational
mechanical system shown in Figure 2.26.

ANSWER: GðsÞ ¼ 1

2s2 þ sþ 1

The complete solution is at www.wiley.com/college/nise.

2.7 Transfer Functions for Systems with Gears

Now that we are able to find the transfer function for rotational systems, we
realize that these systems, especially those driven by motors, are rarely seen
without associated gear trains driving the load. This section covers this
important topic.

Gears provide mechanical advantage to rotational systems. Anyone who has
ridden a 10-speed bicycle knows the effect of gearing. Going uphill, you shift to
provide more torque and less speed. On the straightaway, you shift to obtain more
speed and less torque. Thus, gears allow you to match the drive system and the
load—a trade-off between speed and torque.

For many applications, gears exhibit backlash, which occurs because of the
loose fit between two meshed gears. The drive gear rotates through a small angle
before making contact with the meshed gear. The result is that the angular rotation
of the output gear does not occur until a small angular rotation of the input gear has
occurred. In this section, we idealize the behavior of gears and assume that there is
no backlash.

The linearized interaction between two gears is depicted in Figure 2.27. An
input gear with radius r1 and N1 teeth is rotated through angle u1ðtÞ due to a
torque, T1ðtÞ. An output gear with radius r2 and N2 teeth responds by rotating
through angle u2ðtÞ and delivering a torque, T2ðtÞ. Let us now find the relation-
ship between the rotation of Gear 1, u1ðtÞ, and Gear 2, u2ðtÞ.

From Figure 2.27, as the gears turn, the distance traveled along each gear’s
circumference is the same. Thus,

r1u1 ¼ r2u2 ð2:132Þ

FIGURE 2.26 Rotational
mechanical system for Skill-
Assessment Exercise 2.9

1 N-m/rad
1 N-m/rad

1 N-m-s/rad

1 N-m-s/rad

θ2(t)T(t)

1 kg-m2

r2

θ

Input
drive gear,

Gear 1 Output
driven gear,

Gear 2

r1

N1

N2
T1(t) 1(t) θ T2(t)2(t)

FIGURE 2.27 A gear system
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