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Root Locus Techniques

8

Chapter Learning Outcomes

After completing this chapter the student will be able to:

� Define a root locus (Sections 8.1–8.2)

� State the properties of a root locus (Section 8.3)

� Sketch a root locus (Section 8.4)

� Find the coordinates of points on the root locus and their associated gains
(Sections 8.5–8.6)

� Use the root locus to design a parameter value to meet a transient response
specification for systems of order 2 and higher (Sections 8.7–8.8)

� Sketch the root locus for positive-feedback systems (Section 8.9)

� Find the root sensitivity for points along the root locus (Section 8.10)

Case Study Learning Outcomes

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

� Given the antenna azimuth position control system shown on the front endpapers,
you will be able to find the preamplifier gain to meet a transient response
specification.

� Given the pitch or heading control system for the Unmanned Free-Swimming
Submersible vehicle shown on the back endpapers, you will be able to plot the
root locus and design the gain to meet a transient response specification. You will
then be able to evaluate other performance characteristics.
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8.1 Introduction

Root locus, a graphical presentation of the closed-loop poles as a system parameter is
varied, is a powerful method of analysis and design for stability and transient response
(Evans, 1948; 1950). Feedback control systems are difficult to comprehend from a
qualitative point of view, and hence they rely heavily upon mathematics. The root locus
covered in this chapter is a graphical technique that gives us the qualitative description
of a control system’s performance that we are looking for and also serves as a powerful
quantitative tool that yields more information than the methods already discussed.

Up to this point, gains and other system parameters were designed to yield a
desired transient response for only first- and second-order systems. Even though the
root locus can be used to solve the same kind of problem, its real power lies in its
ability to provide solutions for systems of order higher than 2. For example, under
the right conditions, a fourth-order system’s parameters can be designed to yield a
given percent overshoot and settling time using the concepts learned in Chapter 4.

The root locus can be used to describe qualitatively the performance of a
system as various parameters are changed. For example, the effect of varying gain
upon percent overshoot, settling time, and peak time can be vividly displayed. The
qualitative description can then be verified with quantitative analysis.

Besides transient response, the root locus also gives a graphical representation
of a system’s stability. We can clearly see ranges of stability, ranges of instability, and
the conditions that cause a system to break into oscillation.

Before presenting root locus, let us review two concepts that we need for the
ensuing discussion: (1) the control system problem and (2) complex numbers and
their representation as vectors.

The Control System Problem
We have previously encountered the control system problem in Chapter 6: Whereas the
poles of the open-loop transfer function are easily found (typically, they are known by
inspection and do not change with changes in system gain), the poles of the closed-loop
transferfunctionaremoredifficulttofind(typically,theycannotbefoundwithoutfactoring
the closed-loop system’s characteristic polynomial, the denominator of the closed-loop
transfer function), and further, the closed-loop poles change with changes in system gain.

A typical closed-loop feedback control system is shown in Figure 8.1(a). The
open-loop transfer function was defined in Chapter 5 as KG(s)H(s). Ordinarily, we

FIGURE 8.1 a. Closed-loop
system; b. equivalent transfer
function
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can determine the poles of KG(s)H(s), since these poles arise from simple cascaded
first- or second-order subsystems. Further, variations in K do not affect the location
of any pole of this function. On the other hand, we cannot determine the poles of
TðsÞ ¼ KGðsÞ=½1þKGðsÞHðsÞ� unless we factor the denominator. Also, the poles of
T(s) change with K.

Let us demonstrate. Letting

GðsÞ ¼ NGðsÞ
DGðsÞ ð8:1Þ

and

HðsÞ ¼ NHðsÞ
DHðsÞ ð8:2Þ

then

TðsÞ ¼ KNGðsÞDHðsÞ
DGðsÞDHðsÞ þKNGðsÞNHðsÞ ð8:3Þ

whereN andD are factored polynomials and signify numerator and denominator terms,
respectively. We observe the following: Typically, we know the factors of the numerators
and denominators of G(s) and H(s). Also, the zeros of T(s) consist of the zeros of G(s)
and the poles of H(s). The poles of T(s) are not immediately known and in fact can
change with K. For example, if GðsÞ ¼ ðsþ 1Þ=½sðsþ 2Þ� and HðsÞ ¼ ðsþ 3Þ=ðsþ 4Þ,
the poles of KG(s)H(s) are 0;�2; and�4. The zeros of KG(s)H(s) are �1 and � 3.
Now, TðsÞ ¼ Kðsþ 1Þðsþ 4Þ=½s3 þ ð6þKÞs2þ ð8þ 4KÞsþ 3K�. Thus, the zeros of
T(s) consist of the zeros of G(s) and the poles of H(s). The poles of T(s) are not
immediately known without factoring the denominator, and they are a function of K.
Since the system’s transient response and stability are dependent upon the poles ofT(s),
we have no knowledge of the system’s performance unless we factor the denominator
for specific values ofK. The root locus will be used to give us a vivid picture of the poles
of T(s) as K varies.

Vector Representation of Complex Numbers
Any complex number, s þ jv, described in Cartesian coordinates can be graphi-
cally represented by a vector, as shown in Figure 8.2(a). The complex number also
can be described in polar form with magnitude M and angle u, as M—u. If the
complex number is substituted into a complex function, F(s), another complex
number will result. For example, if FðsÞ ¼ ðsþ aÞ, then substituting the com-
plex number s ¼ s þ jv yields FðsÞ ¼ ðs þ aÞ þ jv, another complex number. This
number is shown in Figure 8.2(b). Notice that F(s) has a zero at �a. If we translate
the vector a units to the left, as in Figure 8.2(c), we have an alternate represen-
tation of the complex number that originates at the zero of F(s) and terminates on
the point s ¼ s þ jv.

We conclude that (sþ a) is a complex number and can be represented by a
vector drawn from the zero of the function to the point s. For example, ðsþ 7Þjs!5þj2 is
a complex number drawn from the zero of the function, �7, to the point s, which is
5þ j2, as shown in Figure 8.2(d).

8.1 Introduction 389
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Now let us apply the concepts to a complicated function. Assume a function

FðsÞ ¼
Qm
i¼1
ðsþ ziÞ

Qn
j¼1
ðsþ pjÞ

¼
Q

numerator’s complex factorsQ
denominator’s complex factors

ð8:4Þ

where the symbol
Q

means ‘‘product,’’ m ¼ number of zeros; and n ¼ number of
poles. Each factor in the numerator and each factor in the denominator is a complex
number that can be represented as a vector. The function defines the complex
arithmetic to be performed in order to evaluate F(s) at any point, s. Since each com-
plex factor can be thought of as a vector, the magnitude, M, of F(s) at any point, s, is

M ¼
Q

zero lengthsQ
pole lengths

¼

Ym
i¼1

j sþ zið Þj
Yn
j¼1

jðsþ pjÞj
ð8:5Þ

where a zero length, jðsþ ziÞj, is the magnitude of the vector drawn from the zero ofF(s)
at�zi to the point s, and a pole length, jðsþ pjÞj, is the magnitude of the vector drawn
from the pole of F(s) at �pj to the point s. The angle, u, of F(s) at any point, s, is

u ¼P zero angles�P pole angles

¼
Xm
i¼1

— sþ zið Þ �
Xn
j¼1

—ðsþ pjÞ ð8:6Þ

where a zero angle is the angle, measured from the positive extension of the real axis,
of a vector drawn from the zero of F(s) at �zi to the point s, and a pole angle is the

FIGURE 8.2 Vector
representation of complex
numbers: a. s ¼ s þ jv;
b. ðsþ aÞ; c. alternate
representation of ðsþ aÞ;
d. ðsþ 7Þjs!5þj2
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angle, measured from the positive extension of the real axis, of the vector drawn from
the pole of F(s) at �pj to the point s.

As a demonstration of the above concept, consider the following example.

Example 8.1

Evaluation of a Complex Function via Vectors

PROBLEM: Given

FðsÞ ¼ ðsþ 1Þ
sðsþ 2Þ ð8:7Þ

find F(s) at the point s ¼ �3þ j4.

SOLUTION: The problem is graphically depicted in Figure 8.3, where each
vector, ðsþ aÞ, of the function is shown terminating on the selected point
s ¼ �3þ j4. The vector originating at the zero at �1 isffiffiffiffiffi

20
p

—116:6� ð8:8Þ
The vector originating at the pole at the origin is

5—126:9� ð8:9Þ
The vector originating at the pole at �2 isffiffiffiffiffi

17
p

—104:0� ð8:10Þ
Substituting Eqs. (8.8) through (8.10) into Eqs. (8.5) and (8.6) yields

M—u ¼
ffiffiffiffiffi
20
p

5
ffiffiffiffiffi
17
p —116:6� � 126:9� � 104:0� ¼ 0:217—� 114:3� ð8:11Þ

as the result for evaluating F(s) at the point �3þ j4.

Skill-Assessment Exercise 8.1

PROBLEM: Given

FðsÞ ¼ ðsþ 2Þðsþ 4Þ
sðsþ 3Þðsþ 6Þ

find F(s) at the point s ¼ �7þ j9 the following ways:

a. Directly substituting the point into F(s)

b. Calculating the result using vectors

ANSWER:

�0:0339� j0:0899 ¼ 0:096—� 110:7�

The complete solution is at www.wiley.com/college/nise.

We are now ready to begin our discussion of the root locus.
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FIGURE 8.3 Vector
representation of Eq. (8.7)

TryIt 8.1

Use the following MATLAB
statements to solve the
problem given in Skill-
Assessment Exercise 8.1.

s=-7+9j;
G=(s+2)*(s+4)/...
(s*(s+3)*(s+6));
Theta=(180/pi)*...
angle(G)

M=abs(G)
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8.2 Defining the Root Locus

A security camera system similar to that shown in Figure 8.4(a) can automatically
follow a subject. The tracking system monitors pixel changes and positions the
camera to center the changes.

The root locus technique can be used to analyze and design the effect of loop
gain upon the system’s transient response and stability. Assume the block diagram
representation of a tracking system as shown in Figure 8.4(b), where the closed-loop
poles of the system change location as the gain, K, is varied. Table 8.1, which was
formed by applying the quadratic formula to the denominator of the transfer
function in Figure 8.4(c), shows the variation of pole location for different values
of gain, K. The data of Table 8.1 is graphically displayed in Figure 8.5(a), which
shows each pole and its gain.

As the gain, K, increases in Table 8.1 and Figure 8.5(a), the closed-loop pole,
which is at�10 for K ¼ 0, moves toward the right, and the closed-loop pole, which is
at 0 forK ¼ 0, moves toward the left. They meet at�5, break away from the real axis,
and move into the complex plane. One closed-loop pole moves upward while the
other moves downward. We cannot tell which pole moves up or which moves down.
In Figure 8.5(b), the individual closed-loop pole locations are removed and their
paths are represented with solid lines. It is this representation of the paths of the

(a)

K1
s(s + 10)

R(s)

Subject’s
position

+

–

C(s)

Camera
position

C(s)

s2 + 10s + K

where K = K1K2

(b)

(c)

Amplifier
Motor

and camera

K2

R(s) K

Sensors

FIGURE 8.4 a. Security cameras with auto tracking can be used to follow moving objects
automatically; b. block diagram; c. closed-loop transfer function

392 Chapter 8 Root Locus Techniques



Apago PDF Enhancer

E1C08 11/02/2010 10:23:14 Page 393

closed-loop poles as the gain is varied that we call a root locus. For most of our work,
the discussion will be limited to positive gain, or K � 0.

The root locus shows the changes in the transient response as the gain, K, varies.
First of all, the poles are real for gains less than 25. Thus, the system is overdamped. At
a gain of 25, the poles are real and multiple and hence critically damped. For gains
above 25, the system is underdamped. Even though these preceding conclusions were
available through the analytical techniques covered in Chapter 4, the following
conclusions are graphically demonstrated by the root locus.

Directing our attention to the underdamped portion of the root locus, we see that
regardless of the value of gain, the real parts of the complex poles are always the same.

TABLE 8.1 Pole location as function of gain for the
system of Figure 8.4

K Pole 1 Pole 2

0 �10 0

5 �9.47 �0.53

10 �8.87 �1.13

15 �8.16 �1.84

20 �7.24 �2.76

25 �5 �5

30 �5þ j2:24 �5� j2:24

35 �5þ j3:16 �5� j3:16

40 �5þ j3:87 �5� j3:87

45 �5þ j4:47 �5� j4:47

50 �5þ j5 �5� j5

FIGURE 8.5 a. Pole plot from Table 8.1; b. root locus
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Since the settling time is inversely proportional to the real part of the complex poles for
this second-order system, the conclusion is that regardless of the value of gain, the settling
time for the system remains the same under all conditions of underdamped responses.

Also, as we increase the gain, the damping ratio diminishes, and the percent
overshoot increases. The damped frequency of oscillation, which is equal to the
imaginary part of the pole, also increases with an increase in gain, resulting in a
reduction of the peak time. Finally, since the root locus never crosses over into the
right half-plane, the system is always stable, regardless of the value of gain, and can
never break into a sinusoidal oscillation.

These conclusions for such a simple system may appear to be trivial. What we
are about to see is that the analysis is applicable to systems of order higher than 2.
For these systems, it is difficult to tie transient response characteristics to the pole
location. The root locus will allow us to make that association and will become an
important technique in the analysis and design of higher-order systems.

8.3 Properties of the Root Locus

In Section 8.2, we arrived at the root locus by factoring the second-order polynomial
in the denominator of the transfer function. Consider what would happen if that
polynomial were of fifth or tenth order. Without a computer, factoring the polyno-
mial would be quite a problem for numerous values of gain.

We are about to examine the properties of the root locus. From these
properties we will be able to make a rapid sketch of the root locus for higher-order
systems without having to factor the denominator of the closed-loop transfer
function.

The properties of the root locus can be derived from the general control system
of Figure 8.1(a). The closed-loop transfer function for the system is

TðsÞ ¼ KGðsÞ
1þKGðsÞHðsÞ ð8:12Þ

From Eq. (8.12), a pole, s, exists when the characteristic polynomial in the denomi-
nator becomes zero, or

KGðsÞHðsÞ ¼ �1 ¼ 1—ð2kþ 1Þ180� k ¼ 0;�1;�2;�3; . . . ð8:13Þ

where�1 is represented in polar form as 1 —ð2kþ 1Þ180�. Alternately, a value of s is
a closed-loop pole if

jKGðsÞHðsÞj ¼ 1 ð8:14Þ

and

—KGðsÞHðsÞ ¼ ð2kþ 1Þ180� ð8:15Þ

Equation (8.13) implies that if a value of s is substituted into the function
KG(s)H(s), a complex number results. If the angle of the complex number is an odd
multiple of 180�, that value of s is a system pole for some particular value of K. What

394 Chapter 8 Root Locus Techniques
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value of K? Since the angle criterion of Eq. (8.15) is satisfied, all that remains is to
satisfy the magnitude criterion, Eq. (8.14). Thus,

K ¼ 1

jGðsÞjjHðsÞj ð8:16Þ

We have just found that a pole of the closed-loop system causes the angle of
KG(s)H(s), or simply G(s)H(s) since K is a scalar, to be an odd multiple of 180�.
Furthermore, the magnitude ofKG(s)H(s) must be unity, implying that the value ofK is
the reciprocal of the magnitude of G(s)H(s) when the pole value is substituted for s.

Let us demonstrate this relationship for the second-order system of Figure 8.4.
The fact that closed-loop poles exist at �9:47 and �0:53 when the gain is 5 has
already been established in Table 8.1. For this system,

KGðsÞHðsÞ ¼ K

sðsþ 10Þ ð8:17Þ

Substituting the pole at �9:47 for s and 5 for K yields KGðsÞHðsÞ ¼ �1. The student
can repeat the exercise for other points in Table 8.1 and show that each case yields
KGðsÞHðsÞ ¼ �1.

It is helpful to visualize graphically the meaning of Eq. (8.15). Let us apply the
complex number concepts reviewed in Section 8.1 to the root locus of the system
shown in Figure 8.6. For this system the open-loop transfer function is

KGðsÞHðsÞ ¼ Kðsþ 3Þðsþ 4Þ
ðsþ 1Þðsþ 2Þ ð8:18Þ

The closed-loop transfer function, T(s), is

TðsÞ ¼ Kðsþ 3Þðsþ 4Þ
ð1þKÞs2 þ ð3þ 7KÞsþ ð2þ 12KÞ ð8:19Þ

If point s is a closed-loop system pole for some value of gain, K, then s must
satisfy Eqs. (8.14) and (8.15).

K(s + 3) (s + 4)

(s + 1) (s + 2)

R(s)

(a)

(b)

C(s)
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+
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jω

s-plane
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FIGURE 8.6 a. Example
system; b. pole-zero plot
of G(s)
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Consider the point�2þ j3. If this point is a closed-loop pole for some value of
gain, then the angles of the zeros minus the angles of the poles must equal an odd
multiple of 180�. From Figure 8.7,

u1 þ u2 � u3 � u4 ¼ 56:31� þ 71:57� � 90� � 108:43� ¼ �70:55� ð8:20Þ
Therefore, �2þ j3 is not a point on the root locus, or alternatively, �2þ j3 is not a
closed-loop pole for any gain.

If these calculations are repeated for the point�2þ jð ffiffiffi2p =2Þ, the angles do add
up to 180�. That is, �2þ jð ffiffiffi2p =2Þ is a point on the root locus for some value of gain.
We now proceed to evaluate that value of gain.

From Eqs. (8.5) and (8.16),

K ¼ 1

jGðsÞHðsÞj ¼
1

M
¼
Q

pole lengthsQ
zero lengths

ð8:21Þ

Looking at Figure 8.7 with the point�2þ j3 replaced by�2þ jð ffiffiffi2p =2Þ, the gain,K, is
calculated as

K ¼ L3L4

L1L2
¼

ffiffiffi
2
p

2
ð1:22Þ

ð2:12Þð1:22Þ ¼ 0:33 ð8:22Þ

Thus, the point �2þ jð ffiffiffi2p =2Þ is a point on the root locus for a gain of 0.33.
We summarize what we have found as follows: Given the poles and zeros of the

open-loop transfer function, KG(s)H(s), a point in the s-plane is on the root locus for
a particular value of gain, K, if the angles of the zeros minus the angles of the poles,
all drawn to the selected point on the s-plane, add up to ð2kþ 1Þ180�. Furthermore,
gain K at that point for which the angles add up to ð2kþ 1Þ180� is found by dividing
the product of the pole lengths by the product of the zero lengths.

jω

j3

L4

s-plane

L3L2L1

–1–2–3– 4

3θ 4θ2θ1θ
σ

FIGURE 8.7 Vector representation of G(s) from Figure 8.6(a) at �2þ j3
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Skill-Assessment Exercise 8.2

PROBLEM: Given a unity feedback system that has the forward transfer function

GðsÞ ¼ Kðsþ 2Þ
ðs2 þ 4sþ 13Þ

do the following:

a. Calculate the angle ofG(s) at the point (�3þ j0) by finding the algebraic sum of
angles of the vectors drawn from the zeros and poles of G(s) to the given point.

b. Determine if the point specified in a is on the root locus.

c. If the point specified in a is on the root locus, find the gain, K, using the
lengths of the vectors.

ANSWERS:

a. Sum of angles ¼ 180�

b. Point is on the root locus

c. K ¼ 10

The complete solution is at www.wiley.com/college/nise.

8.4 Sketching the Root Locus

It appears from our previous discussion that the root locus can be obtained by
sweeping through every point in the s-plane to locate those points for which the
angles, as previously described, add up to an odd multiple of 180�. Although this task
is tedious without the aid of a computer, the concept can be used to develop rules
that can be used to sketch the root locus without the effort required to plot the locus.
Once a sketch is obtained, it is possible to accurately plot just those points that are of
interest to us for a particular problem.

The following five rules allow us to sketch the root locus using minimal
calculations. The rules yield a sketch that gives intuitive insight into the behavior
of a control system. In the next section, we refine the sketch by finding actual points
or angles on the root locus. These refinements, however, require some calculations or
the use of computer programs, such as MATLAB.

1. Number of branches. Each closed-loop pole moves as the gain is varied. If we
define a branch as the path that one pole traverses, then there will be one branch
for each closed-loop pole. Our first rule, then, defines the number of branches of
the root locus:

The number of branches of the root locus equals the number of closed-loop poles.

As an example, look at Figure 8.5(b), where the two branches are shown. One
originates at the origin, the other at �10.

2. Symmetry. If complex closed-loop poles do not exist in conjugate pairs, the resulting
polynomial, formed by multiplying the factors containing the closed-loop poles,

TryIt 8.2

Use MATLAB and the fol-
lowing statements to solve
Skill-Assessment Exercise
8.2.

s=-3+0j;
G=(s+2)/(s^2+4*s+13);
Theta=(180/pi)*...
angle(G)
M=abs(G);
K=1/M
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would have complex coefficients. Physically realizable systems cannot have complex
coefficients in their transfer functions. Thus, we conclude:

The root locus is symmetrical about the real axis.

An example of symmetry about the real axis is shown in Figure 8.5(b).

3. Real-axis segments. Let us make use of the angle property, Eq. (8.15), of the
points on the root locus to determine where the real-axis segments of the root

locus exist. Figure 8.8 shows the poles and zeros of a general open-loop
system. If an attempt is made to calculate the angular contribution of
the poles and zeros at each point, P1, P2, P3, and P4, along the real axis,
we observe the following: (1) At each point the angular contribution of
a pair of open-loop complex poles or zeros is zero, and (2) the
contribution of the open-loop poles and open-loop zeros to the left
of the respective point is zero. The conclusion is that the only contri-
bution to the angle at any of the points comes from the open-loop, real-
axis poles and zeros that exist to the right of the respective point. If we
calculate the angle at each point using only the open-loop, real-axis
poles and zeros to the right of each point, we note the following: (1) The
angles on the real axis alternate between 0� and 180�, and (2) the angle

is 180� for regions of the real axis that exist to the left of an odd number of poles
and/or zeros. The following rule summarizes the findings:

On the real axis, for K > 0 the root locus exists to the left of an odd number of real-
axis, finite open-loop poles and/or finite open-loop zeros.

Examine Figure 8.6(b). According to the rule just developed, the real-axis
segments of the root locus are between �1 and �2 and between �3 and �4
as shown in Figure 8.9.

4. Starting and ending points. Where does the root locus begin (zero gain) and end
(infinite gain)? The answer to this question will enable us to expand the sketch of
the root locus beyond the real-axis segments. Consider the closed-loop transfer
function, T(s), described by Eq. (8.3). T(s) can now be evaluated for both large
and small gains, K. As K approaches zero (small gain),

TðsÞ � KNGðsÞDHðsÞ
DGðsÞDHðsÞ þ e

ð8:23Þ

From Eq. (8.23) we see that the closed-loop system poles at small gains approach
the combined poles of G(s) and H(s). We conclude that the root locus begins at
the poles of G(s)H(s), the open-loop transfer function.

s-plane

jω

P4 P3 P2 P1
σ

FIGURE 8.8 Poles and zeros of a general
open-loop system with test points, Pi, on the
real axis

–4

jω

s-plane

–3 –2 –1

σ

FIGURE 8.9 Real-axis segments of the root locus for the system of Figure 8.6
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At high gains, where K is approaching infinity,

TðsÞ � KNGðsÞDHðsÞ
eþKNGðsÞNHðsÞ ð8:24Þ

From Eq. (8.24) we see that the closed-loop system poles at large gains approach
the combined zeros of G(s) and H(s). Now we conclude that the root locus ends at
the zeros of G(s)H(s), the open-loop transfer function.

Summarizing what we have found:

The root locus begins at the finite and infinite poles of G(s)H(s) and ends at the
finite and infinite zeros of G(s)H(s).

Remember that these poles and zeros are the open-loop poles and zeros.
In order to demonstrate this rule, look at the system in Figure 8.6(a), whose

real-axis segments have been sketched in Figure 8.9. Using the rule just derived,
we find that the root locus begins at the poles at�1 and�2 and ends at the zeros at
�3 and �4 (see Figure 8.10). Thus, the poles start out at �1 and �2 and move
through the real-axis space between the two poles. They meet somewhere
between the two poles and break out into the complex plane, moving as complex
conjugates. The poles return to the real axis somewhere between the zeros at �3
and �4, where their path is completed as they move away from each other, and
end up, respectively, at the two zeros of the open-loop system at �3 and �4.

5. Behavior at infinity. Consider applying Rule 4 to the following open-loop transfer
function:

KGðsÞHðsÞ ¼ K

sðsþ 1Þðsþ 2Þ ð8:25Þ

There are three finite poles, at s ¼ 0;�1; and� 2, and no finite zeros.

A function can also have infinite poles and zeros. If the function approaches
infinity as s approaches infinity, then the function has a pole at infinity. If the
function approaches zero as s approaches infinity, then the function has a zero at
infinity. For example, the function GðsÞ ¼ s has a pole at infinity, since G(s)
approaches infinity as s approaches infinity. On the other hand, GðsÞ ¼ 1=s has a
zero at infinity, since G(s) approaches zero as s approaches infinity.

Every function of s has an equal number of poles and zeros if we include the
infinite poles and zeros as well as the finite poles and zeros. In this example,

jω

–3–4 –2 –1

s-plane

σ

j1

–j1 FIGURE 8.10 Complete root
locus for the system of Figure
8.6
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Eq. (8.25) contains three finite poles and three infinite zeros. To illustrate, let s
approach infinity. The open-loop transfer function becomes

KGðsÞHðsÞ � K

s3
¼ K

s 	 s 	 s ð8:26Þ

Each s in the denominator causes the open-loop function, KG(s)H(s), to become
zero as that s approaches infinity. Hence, Eq. (8.26) has three zeros at infinity.

Thus, for Eq. (8.25), the root locus begins at the finite poles of KG(s)H(s) and
ends at the infinite zeros. The question remains: Where are the infinite zeros? We
must know where these zeros are in order to show the locus moving from the three
finite poles to the three infinite zeros. Rule 5 helps us locate these zeros at infinity.
Rule 5 also helps us locate poles at infinity for functions containing more finite zeros
than finite poles.1

We now state Rule 5, which will tell us what the root locus looks like as it
approaches the zeros at infinity or as it moves from the poles at infinity. The
derivation can be found in Appendix M.1 at www.wiley.com/college/nise.

The root locus approaches straight lines as asymptotes as the locus approaches
infinity. Further, the equation of the asymptotes is given by the real-axis intercept, sa

and angle, ua as follows:

sa ¼
P

finite poles�P finite zeros

#finite poles�#finite zeros
ð8:27Þ

ua ¼
ð2kþ 1Þp

#finite poles�#finite zeros
ð8:28Þ

where k ¼ 0;�1;�2;�3 and the angle is given in radianswith respect to the positive
extension of the real axis.

Notice that the running index, k, in Eq. (8.28) yields a multiplicity of lines that
account for the many branches of a root locus that approach infinity. Let us
demonstrate the concepts with an example.

Example 8.2

Sketching a Root Locus with Asymptotes

PROBLEM: Sketch the root locus for the system shown in Figure 8.11.

1 Physical systems, however, have more finite poles than finite zeros, since the implied differentiation
yields infinite output for discontinuous input functions, such as step inputs.

R(s) +

–

C(s)K(s + 3)

s(s + 1)(s + 2)(s + 4)

FIGURE 8.11 System for Example 8.2.
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SOLUTION: Let us begin by calculating the asymptotes. Using Eq. (8.27), the real-
axis intercept is evaluated as

sa ¼ ð�1� 2� 4Þ � ð�3Þ
4� 1

¼ � 4

3
ð8:29Þ

The angles of the lines that intersect at �4=3, given by Eq. (8.28), are

ua ¼ ð2kþ 1Þp
#finite poles�#finite zeros

ð8:30aÞ

¼ p=3 for k ¼ 0 ð8:30bÞ
¼ p for k ¼ 1 ð8:30cÞ
¼ 5p=3 for k ¼ 2 ð8:30dÞ

If the value for k continued to increase, the angles would begin to repeat. The
number of lines obtained equals the difference between the number of finite poles
and the number of finite zeros.

Rule 4 states that the locus begins at the open-loop poles and ends at the
open-loop zeros. For the example there are more open-loop poles than open-loop
zeros. Thus, there must be zeros at infinity. The asymptotes tell us how we get to
these zeros at infinity.

Figure 8.12 shows the complete root locus as well as the asymptotes that were
just calculated. Notice that we have made use of all the rules learned so far. The
real-axis segments lie to the left of an odd number of poles and/or zeros. The locus
starts at the open-loop poles and ends at the open-loop zeros. For the example
there is only one open-loop finite zero and three infinite zeros. Rule 5, then, tells us
that the three zeros at infinity are at the ends of the asymptotes.

–2 0

Asymptote

s-plane

–4 –3

Asymptote

Asymptote

j1

jω

1 2

–j1

σ

–j2

–j3

j3

–1

j2

FIGURE 8.12 Root locus and
asymptotes for the system of
Figure 8.11
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Skill-Assessment Exercise 8.3

PROBLEM: Sketch the root locus and its asymptotes for a unity feedback system
that has the forward transfer function

GðsÞ ¼ K

ðsþ 2Þðsþ 4Þðsþ 6Þ

ANSWER: The complete solution is at www.wiley.com/college/nise.

8.5 Refining the Sketch

The rules covered in the previous section permit us to sketch a root locus rapidly. If we
want more detail, we must be able to accurately find important points on the root locus
along with their associated gain. Points on the real axis where the root locus enters or
leaves the complex plane—real-axis breakaway and break-in points—and the jv-axis
crossings are candidates. We can also derive a better picture of the root locus by finding
the angles of departure and arrival from complex poles and zeros, respectively.

In this section, we discuss the calculations required to obtain specific points on
the root locus. Some of these calculations can be made using the basic root locus
relationship that the sum of the zero angles minus the sum of the pole angles equals
an odd multiple of 180�, and the gain at a point on the root locus is found as the ratio
of (1) the product of pole lengths drawn to that point to (2) the product of zero
lengths drawn to that point. We have yet to address how to implement this task. In
the past, an inexpensive tool called a SpiruleTM added the angles together rapidly
and then quickly multiplied and divided the lengths to obtain the gain. Today we can
rely on hand-held or programmable calculators as well as personal computers.

Students pursuing MATLAB will learn how to apply it to the root locus at the
end of Section 8.6. Other alternatives are discussed in Appendix H.2 at www.wiley.
com/college/nise. The discussion can be adapted to programmable hand-held calcu-
lators. All readers are encouraged to select a computational aid at this point. Root
locus calculations can be labor intensive if hand calculations are used.

We now discuss how to refine our root locus sketch by calculating real-axis
breakaway and break-in points, jv-axis crossings, angles of departure from complex
poles, and angles of arrival to complex zeros. We conclude by showing how to find
accurately any point on the root locus and calculate the gain.

Real-Axis Breakaway and Break-In Points
Numerous root loci appear to break away from the real axis as the system poles
move from the real axis to the complex plane. At other times the loci appear to
return to the real axis as a pair of complex poles becomes real. We illustrate this in
Figure 8.13. This locus is sketched using the first four rules: (1) number of branches,
(2) symmetry, (3) real-axis segments, and (4) starting and ending points. The figure
shows a root locus leaving the real axis between �1 and�2 and returning to the real
axis betweenþ3 andþ5. The point where the locus leaves the real axis,�s1, is called
the breakaway point, and the point where the locus returns to the real axis, s2, is
called the break-in point.
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At the breakaway or break-in point, the branches of the root locus form an
angle of 180�=n with the real axis, where n is the number of closed-loop poles arriving
at or departing from the single breakaway or break-in point on the real axis (Kuo,
1991). Thus, for the two poles shown in Figure 8.13, the branches at the breakaway
point form 90� angles with the real axis.

We now show how to find the breakaway and break-in points. As the two
closed-loop poles, which are at�1 and�2 when K ¼ 0, move toward each other, the
gain increases from a value of zero. We conclude that the gain must be maximum
along the real axis at the point where the breakaway occurs, somewhere between�1
and �2. Naturally, the gain increases above this value as the poles move into the
complex plane. We conclude that the breakaway point occurs at a point of maximum
gain on the real axis between the open-loop poles.

Now let us turn our attention to the break-in point somewhere between þ3
and þ5 on the real axis. When the closed-loop complex pair returns to the real axis,
the gain will continue to increase to infinity as the closed-loop poles move toward
the open-loop zeros. It must be true, then, that the gain at the break-in point is the
minimum gain found along the real axis between the two zeros.

The sketch in Figure 8.14 shows the variation of real-axis gain. The breakaway
point is found at the maximum gain between �1 and �2, and the break-in point is
found at the minimum gain between þ3 and þ5.

There are three methods for finding the points at which the root locus breaks
away from and breaks into the real axis. The first method is to maximize and
minimize the gain, K, using differential calculus. For all points on the root locus,
Eq. (8.13) yields

K ¼ � 1

GðsÞHðsÞ ð8:31Þ

3–2 –1

–

s-plane

j

210
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j1

j3

j4

–j1

–j3

4 5
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–j2

j2

1
σ

σσ

ω

FIGURE 8.13 Root locus example showing real-axis breakaway (�s1) and break-in
points (s2)
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For points along the real-axis segment of the root locus where breakaway and break-
in points could exist, s ¼ s. Hence, along the real axis Eq. (8.31) becomes

K ¼ � 1

GðsÞHðsÞ ð8:32Þ

This equation then represents a curve ofK versuss similar to that shown in Figure 8.14.
Hence, if we differentiate Eq. (8.32) with respect to s and set the derivative equal to
zero, we can find the points of maximum and minimum gain and hence the breakaway
and break-in points. Let us demonstrate.

Example 8.3

Breakaway and Break-in Points via Differentiation

PROBLEM: Find the breakaway and break-in points for the root locus of Figure 8.13,
using differential calculus.

SOLUTION: Using the open-loop poles and zeros, we represent the open-loop
system whose root locus is shown in Figure 8.13 as follows:

KGðsÞHðsÞ ¼ Kðs� 3Þðs� 5Þ
ðsþ 1Þðsþ 2Þ ¼

Kðs2 � 8sþ 15Þ
ðs2 þ 3sþ 2Þ ð8:33Þ

But for all points along the root locus, KGðsÞHðsÞ ¼ �1, and along the real axis,
s ¼ s. Hence,

Kðs2 � 8s þ 15Þ
ðs2 þ 3s þ 2Þ ¼ �1 ð8:34Þ

Solving for K, we find

K ¼ �ðs
2 þ 3s þ 2Þ

ðs2 � 8s þ 15Þ ð8:35Þ

Differentiating K with respect to s and setting the derivative equal to zero yields

dK

ds
¼ ð11s2 � 26s � 61Þ
ðs2 � 8s þ 15Þ2 ¼ 0 ð8:36Þ

Solving fors, we finds ¼ �1:45 and 3.82, which are the breakaway and break-in points.

FIGURE 8.14 Variation of
gain along the real axis for the
root locus of Figure 8.13

K

54321 2
σ

–1–2–3 1– σ σ0
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The second method is a variation on the differential calculus method. Called
the transition method, it eliminates the step of differentiation (Franklin, 1991). This
method, derived in Appendix M.2 at www.wiley.com/college/nise, is now stated:

Breakaway and break-in points satisfy the relationship

Xm
1

1

s þ zi
¼
Xn

1

1

s þ pi
ð8:37Þ

where zi and pi are the negative of the zero and pole values, respectively, of G(s)H(s).

Solving Eq. (8.37) for s, the real-axis values that minimize or maximize K, yields
the breakaway and break-in points without differentiating. Let us look at an
example.

Example 8.4

Breakaway and Break-in Points Without Differentiation

PROBLEM: Repeat Example 8.3 without differentiating.

SOLUTION: Using Eq. (8.37),

1

s � 3
þ 1

s � 5
¼ 1

s þ 1
þ 1

s þ 2
ð8:38Þ

Simplifying,

11s2 � 26s � 61 ¼ 0 ð8:39Þ
Hence, s ¼ �1:45 and 3.82, which agrees with Example 8.3.

For the third method, the root locus program discussed in Appendix H.2 at www
.wiley.com/college/nise can be used to find the breakaway and break-in points. Simply
use the program to search for the point of maximum gain between �1 and�2 and to
search for the point of minimum gain betweenþ3 andþ5. Table 8.2 shows the results
of the search. The locus leaves the axis at�1:45, the point of maximum gain between
�1 and�2, and reenters the real axis atþ3:8, the point of minimum gain betweenþ3
and þ5. These results are the same as those obtained using the first two methods.
MATLAB also has the capability of finding breakaway and break-in points.

The jv-Axis Crossings
We now further refine the root locus by finding the imaginary-axis crossings. The
importance of the jv-axis crossings should be readily apparent. Looking at Fig-
ure 8.12, we see that the system’s poles are in the left half-plane up to a particular
value of gain. Above this value of gain, two of the closed-loop system’s poles move
into the right half-plane, signifying that the system is unstable. The jv-axis crossing is
a point on the root locus that separates the stable operation of the system from the
unstable operation. The value of v at the axis crossing yields the frequency of
oscillation, while the gain at the jv-axis crossing yields, for this example, the
maximum positive gain for system stability. We should note here that other examples
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illustrate instability at small values of gain and stability at large values of gain. These
systems have a root locus starting in the right–half-plane (unstable at small values of
gain) and ending in the left–half-plane (stable for high values of gain).

To find the jv-axis crossing, we can use the Routh-Hurwitz criterion, covered in
Chapter 6, as follows: Forcing a row of zeros in the Routh table will yield the gain;
going back one row to the even polynomial equation and solving for the roots yields
the frequency at the imaginary-axis crossing.

Example 8.5

Frequency and Gain at Imaginary-Axis Crossing

PROBLEM: For the system of Figure 8.11, find the frequency and gain, K, for which
the root locus crosses the imaginary axis. For what range of K is the system stable?

SOLUTION: The closed-loop transfer function for the system of Figure 8.11 is

TðsÞ ¼ Kðsþ 3Þ
s4 þ 7s3 þ 14s2 þ ð8þKÞsþ 3K

ð8:40Þ

Using the denominator and simplifying some of the entries by multiplying any row
by a constant, we obtain the Routh array shown in Table 8.3.

A complete row of zeros yields the possibility for imaginary axis roots. For
positive values of gain, those for which the root locus is plotted, only the s1 row can
yield a row of zeros. Thus,

�K2 � 65K þ 720 ¼ 0 ð8:41Þ
From this equation K is evaluated as

K ¼ 9:65 ð8:42Þ

TABLE 8.2 Data for breakaway and break-in points for the root locus of Figure 8.13

Real-axis value Gain Comment

�1.41 0.008557

�1.42 0.008585

�1.43 0.008605

�1.44 0.008617

�1.45 0.008623  Max: gain: breakaway

�1.46 0.008622

3.3 44.686

3.4 37.125

3.5 33.000

3.6 30.667

3.7 29.440

3.8 29.000  Min: gain: break-in

3.9 29.202
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Forming the even polynomial by using the s2 row with K ¼ 9:65, we obtain

ð90�KÞs2 þ 21K ¼ 80:35s2 þ 202:7 ¼ 0 ð8:43Þ
and s is found to be equal to �j1:59. Thus the root locus crosses the jv-axis at
�j1:59 at a gain of 9.65. We conclude that the system is stable for 0 
 K < 9:65.

Another method for finding the jv-axis crossing (or any point on the root
locus, for that matter) uses the fact that at the jv-axis crossing, the sum of angles
from the finite open-loop poles and zeros must add to ð2kþ 1Þ180�. Thus, we can
search jv-axis until we find the point that meets this angle condition. A computer
program, such as the root locus program discussed in Appendix H.2 at www.wiley
.com/college/nise or MATLAB, can be used for this purpose. Subsequent exam-
ples in this chapter use this method to determine the jv-axis crossing.

Angles of Departure and Arrival
In this subsection, we further refine our sketch of the root locus by finding angles
of departure and arrival from complex poles and zeros. Consider Figure 8.15,
which shows the open-loop poles and zeros, some of which are complex. The root
locus starts at the open-loop poles and ends at the open-loop zeros. In order to
sketch the root locus more accurately, we want to calculate the root locus
departure angle from the complex poles and the arrival angle to the complex
zeros.

If we assume a point on the root locus e close to a complex pole, the sum of
angles drawn from all finite poles and zeros to this point is an odd multiple of 180�.
Except for the pole that is e close to the point, we assume all angles drawn from all
other poles and zeros are drawn directly to the pole that is near the point. Thus, the
only unknown angle in the sum is the angle drawn from the pole that is e close. We
can solve for this unknown angle, which is also the angle of departure from this
complex pole. Hence, from Figure 8.15(a),

�u1 þ u2 þ u3 � u4 � u5 þ u6 ¼ ð2kþ 1Þ180� ð8:44aÞ

or

u1 ¼ u2 þ u3 � u4 � u5 þ u6 � ð2kþ 1Þ180� ð8:44bÞ
If we assume a point on the root locus e close to a complex zero, the sum of

angles drawn from all finite poles and zeros to this point is an odd multiple of 180�.
Except for the zero that is e close to the point, we can assume all angles drawn from
all other poles and zeros are drawn directly to the zero that is near the point. Thus,

TABLE 8.3 Routh table for Eq. (8.40)

s4 1 14 3K

s3 7 8þK

s2 90�K 21K

s1 �K2 � 65K þ 720

90�K
s0 21K
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the only unknown angle in the sum is the angle drawn from the zero that is e close.
We can solve for this unknown angle, which is also the angle of arrival to this
complex zero. Hence, from Figure 8.15(b),

�u1 þ u2 þ u3 � u4 � u5 þ u6 ¼ ð2kþ 1Þ180� ð8:45aÞ
or

u2 ¼ u1 � u3 þ u4 þ u5 � u6 þ ð2kþ 1Þ180� ð8:45bÞ
Let us look at an example.

2θ

�

s-plane

− q1 + q2 + q3  − q4 − q5 + q6 = (2k + 1)180

s

(a)

q1

q4

q6

q5

q3

w

�

jw

s-plane

s

− q1 + q2 + q3  − q4 − q5 + q6 = (2k + 1)180

(b)

q4

q2 q2

q6

q5

q3

FIGURE 8.15 Open-loop poles and zeros and calculation of a. angle of departure; b. angle of
arrival
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Example 8.6

Angle of Departure from a Complex Pole

PROBLEM: Given the unity feedback system of Figure 8.16, find the angle of
departure from the complex poles and sketch the root locus.

SOLUTION: Using the poles and zeros of GðsÞ ¼ ðsþ 2Þ=½ðsþ 3Þðs2 þ 2sþ 2Þ� as
plotted in Figure 8.17, we calculate the sum of angles drawn to a point e close to the
complex pole, �1þ j1, in the second quadrant. Thus,

�u1 � u2 þ u3 � u4 ¼ �u1 � 90� þ tan�1 1

1

� �
� tan�1 1

2

� �
¼ 180� ð8:46Þ

from which u ¼ �251:6� ¼ 108:4�. A sketch of the root locus is shown in Figure 8.17.
Notice how the departure angle from the complex poles helps us to refine the
shape.

K(s + 2) 

(s + 3)(s2 + 2s + 2)

R(s) C(s)

–

+

FIGURE 8.16 Unity feedback
system with complex poles
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FIGURE 8.17 Root locus for
system of Figure 8.16 showing
angle of departure
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Plotting and Calibrating the Root Locus
Once we sketch the root locus using the rules from Section 8.4, we may want to
accurately locate points on the root locus as well as find their associated gain. For
example, we might want to know the exact coordinates of the root locus as it crosses
the radial line representing 20% overshoot. Further, we also may want the value of
gain at that point.

Consider the root locus shown in Figure 8.12. Let us assume we want to find the
exact point at which the locus crosses the 0.45 damping ratio line and the gain at that
point. Figure 8.18 shows the system’s open-loop poles and zeros along with the z ¼
0:45 line. If a few test points along the z ¼ 0:45 line are selected, we can evaluate
their angular sum and locate that point where the angles add up to an odd multiple of
180�. It is at this point that the root locus exists. Equation (8.20) can then be used to
evaluate the gain, K, at that point.

Selecting the point at radius 2 ðr ¼ 2Þ on the z ¼ 0:45 line, we add the angles of
the zeros and subtract the angles of the poles, obtaining

u2 � u1 � u3 � u4 � u5 ¼ �251:5� ð8:47Þ

Since the sum is not equal to an odd multiple of 180�, the point at radius¼ 2 is not on
the root locus. Proceeding similarly for the points at radius ¼ 1:5; 1; 0:747, and 0.5,
we obtain the table shown in Figure 8.18. This table lists the points, giving their
radius, r, and the sum of angles indicated by the symbol —. From the table we see that
the point at radius 0.747 is on the root locus, since the angles add up to�180�. Using
Eq. (8.21), the gain, K, at this point is

K ¼ jAjjCjjDjjEjjBj ¼ 1:71 ð8:48Þ

In summary, we search a given line for the point yielding a summation of angles
(zero angles–pole angles) equal to an oddmultiple of 180�. We conclude that the point
is on the root locus. The gain at that point is then found by multiplying the pole
lengths drawn to that point and dividing by the product of the zero lengths drawn to
that point. A computer program, such as that discussed in Appendix H.2 at www.
wiley.com/college/nise or MATLAB, can be used.
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FIGURE 8.18 Finding and calibrating exact points on the root locus of Figure 8.12
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Skill-Assessment Exercise 8.4

PROBLEM: Given a unity feedback system that has the forward transfer function

GðsÞ ¼ Kðsþ 2Þ
ðs2 � 4sþ 13Þ

do the following:

a. Sketch the root locus.

b. Find the imaginary-axis crossing.

c. Find the gain, K, at the jv-axis crossing.

d. Find the break-in point.

e. Find the angle of departure from the complex poles.

ANSWERS:

a. See solution at www.wiley.com/college/nise.

b. s ¼ �j ffiffiffiffiffi
21
p

c. K ¼ 4

d. Break-in point ¼ �7

e. Angle of departure ¼ �233:1�

The complete solution is at www.wiley.com/college/nise.

8.6 An Example

We now review the rules for sketching and finding points on the root locus, as well as
present an example. The root locus is the path of the closed-loop poles of a system as
a parameter of the system is varied. Each point on the root locus satisfies the angle
condition, —GðsÞHðsÞ ¼ ð2kþ 1Þ180�. Using this relationship, rules for sketching
and finding points on the root locus were developed and are now summarized:

Basic Rules for Sketching the Root Locus
Number of branches The number of branches of the root locus equals the number of

closed-loop poles.

Symmetry The root locus is symmetrical about the real axis.

Real-axis segments On the real axis, for K > 0 the root locus exists to the left of an
odd number of real-axis, finite open-loop poles and/or finite open-loop zeros.

Starting and ending points The root locus begins at the finite and infinite poles of
G(s)H(s) and ends at the finite and infinite zeros of G(s)H(s).

Behavior at infinity The root locus approaches straight lines as asymptotes as the
locus approaches infinity. Further, the equations of the asymptotes are given by
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the real-axis intercept and angle in radians as follows:

sa ¼
P

finite poles�P finite zeros

#finite poles�#finite zeros
ð8:49Þ

ua ¼ ð2kþ 1Þp
#finite poles�#finite zeros

ð8:50Þ

where k ¼ 0;�1; � 2; � 3; . . . .

Additional Rules for Refining the Sketch
Real-axis breakaway and break-in points The root locus breaks away from the real

axis at a point where the gain is maximum and breaks into the real axis at a point
where the gain is minimum.

Calculation of jv-axis crossings The root locus crosses the jv-axis at the point
where —GðsÞHðsÞ ¼ ð2kþ 1Þ180�. Routh-Hurwitz or a search of the jv-axis for
ð2kþ 1Þ180� can be used to find the jv-axis crossing.

Angles of departure and arrival The root locus departs from complex, open-loop
poles and arrives at complex, open-loop zeros at angles that can be calculated as
follows. Assume a point e close to the complex pole or zero. Add all angles drawn
from all open-loop poles and zeros to this point. The sum equals ð2kþ 1Þ180�. The
only unknown angle is that drawn from the e close pole or zero, since the vectors
drawn from all other poles and zeros can be considered drawn to the complex pole
or zero that is e close to the point. Solving for the unknown angle yields the angle
of departure or arrival.

Plotting and calibrating the root locus All points on the root locus satisfy the
relationship —GðsÞHðsÞ ¼ ð2kþ 1Þ180�. The gain, K, at any point on the root
locus is given by

K ¼ 1

jGðsÞHðsÞj ¼
1

M
�
Q

finite pole lengthsQ
finite zero lengths

ð8:51Þ

Let us now look at a summary example.

Example 8.7

Sketching a Root Locus and Finding Critical Points

PROBLEM: Sketch the root locus for the system shown in Figure 8.19(a) and find
the following:

a. The exact point and gain where the locus crosses the 0.45 damping ratio line

b. The exact point and gain where the locus crosses the jv-axis

c. The breakaway point on the real axis

d. The range of K within which the system is stable
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SOLUTION: The problem solution is shown, in part, in Figure 8.19(b). First sketch
the root locus. Using Rule 3, the real-axis segment is found to be between �2 and
�4. Rule 4 tells us that the root locus starts at the open-loop poles and ends at the
open-loop zeros. These two rules alone give us the general shape of the root locus.

a. To find the exact point where the locus crosses the z ¼ 0:45 line, we can use
the root locus program discussed in Appendix H.2 at www.wiley.com/college/
nise to search along the line

u ¼ 180� � cos�1 0:45 ¼ 116:7� ð8:52Þ
for the point where the angles add up to an odd multiple of 180�. Searching in
polar coordinates, we find that the root locus crosses the z ¼ 0:45 line at
3:4 — 116:7� with a gain, K, of 0.417.

b. To find the exact point where the locus crosses the jv-axis, use the root locus
program to search along the line

u ¼ 90� ð8:53Þ
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= 0.45ζ

–j5

0

(  )b

R(s) C(s)K(s2 – 4s + 20)

(s + 2)(s + 4)

(  )a

jω

–4

s-plane

2 + j4

2 – j4

–j1

–j2

–j3

–j4

j2

j3

j4

j5

2 4
σ

–1 31–3

+

–
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FIGURE 8.19 a. System for Example 8.7; b. root locus sketch.
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for the point where the angles add up to an odd multiple of 180�. Searching in
polar coordinates, we find that the root locus crosses the jv-axis at�j3:9 with
a gain of K ¼ 1:5.

c. To find the breakaway point, use the root locus program to search the real
axis between�2 and�4 for the point that yields maximum gain. Naturally, all
points will have the sum of their angles equal to an odd multiple of 180�. A
maximum gain of 0.0248 is found at the point �2:88. Therefore, the break-
away point is between the open-loop poles on the real axis at �2:88.

d. From the answer to b, the system is stable for K between 0 and 1.5.

Students who are using MATLAB should now run ch8p1 in Appendix B.
You will learn how to use MATLAB to plot and title a root locus,
overlay constant z and vn curves, zoom into and zoom out from a
root locus, and interact with the root locus to find critical
points as well as gains at those points. This exercise solves
Example 8.7 using MATLAB.

Skill-Assessment Exercise 8.5

PROBLEM: Given a unity feedback system that has the forward transfer function

GðsÞ ¼ Kðs� 2Þðs� 4Þ
ðs2 þ 6sþ 25Þ

do the following:

a. Sketch the root locus.

b. Find the imaginary-axis crossing.

c. Find the gain, K, at the jv-axis crossing.

d. Find the break-in point.

e. Find the point where the locus crosses the 0.5 damping ratio line.

f. Find the gain at the point where the locus crosses the 0.5 damping ratio line.

g. Find the range of gain, K, for which the system is stable.

ANSWERS:

a. See solution at www.wiley.com/college/nise.

b. s ¼ �j4:06

c. K ¼ 1

d. Break-in point ¼ þ2:89

e. s ¼ �2:42þ j4:18

f. K ¼ 0:108

g. K < 1

The complete solution is at www.wiley.com/college/nise.

TryIt 8.3

Use MATLAB, the Control
System Toolbox, and the fol-
lowing statements to plot the
root locus for Skill-
Assessment Exercise 8.5.
Solve the remaining parts of
the problem by clicking on
the appropriate points on the
plotted root locus.

numg=poly([2 4]);
deng=[1 6 25];
G=tf(numg,deng)
rlocus(G)
z=0.5
sgrid(z,0)
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8.7 Transient Response Design via Gain
Adjustment

Now that we know how to sketch a root locus, we show how to use it for the design of
transient response. In the last section we found that the root locus crossed the 0.45
damping ratio line with a gain of 0.417. Does this mean that the system will respond
with 20.5% overshoot, the equivalent to a damping ratio of 0.45? It must be
emphasized that the formulas describing percent overshoot, settling time, and
peak time were derived only for a system with two closed-loop complex poles
and no closed-loop zeros. The effect of additional poles and zeros and the conditions
for justifying an approximation of a two-pole system were discussed in Sections 4.7
and 4.8 and apply here to closed-loop systems and their root loci. The conditions
justifying a second-order approximation are restated here:

1. Higher-order poles are much farther into the left half of the s-plane than the
dominant second-order pair of poles. The response that results from a higher-
order pole does not appreciably change the transient response expected from the
dominant second-order poles.

2. Closed-loop zeros near the closed-loop second-order pole pair are nearly can-
celed by the close proximity of higher-order closed-loop poles.

3. Closed-loop zeros not canceled by the close proximity of higher-order closed-loop
poles are far removed from the closed-loop second-order pole pair.

The first condition as it applies to the root locus is shown graphically in Figure
8.20(a) and (b). Figure 8.20(b) would yield a much better second-order approxima-
tion than Figure 8.20(a), since closed-loop pole p3 is farther from the dominant,
closed-loop second-order pair, p1 and p2.

The second condition is shown graphically in Figure 8.20(c) and (d).
Figure 8.20(d) would yield a much better second-order approximation than
Figure 8.20(c), since closed-loop pole p3 is closer to canceling the closed-loop zero.
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FIGURE 8.20 Making second-order approximations
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Summarizing the design procedure for higher-order systems, we arrive at the
following:

1. Sketch the root locus for the given system.

2. Assume the system is a second-order system without any zeros and then find the
gain to meet the transient response specification.

3. Justify your second-order assumption by finding the location of all higher-order
poles and evaluating the fact that they are much farther from the jv-axis than the
dominant second-order pair. As a rule of thumb, this textbook assumes a factor of
five times farther. Also, verify that closed-loop zeros are approximately canceled
by higher-order poles. If closed-loop zeros are not canceled by higher-order
closed-loop poles, be sure that the zero is far removed from the dominant second-
order pole pair to yield approximately the same response obtained without the
finite zero.

4. If the assumptions cannot be justified, your solution will have to be simulated in
order to be sure it meets the transient response specification. It is a good idea to
simulate all solutions, anyway.

We now look at a design example to show how to make a second-order
approximation and then verify whether or not the approximation is valid.

Example 8.8

Third-Order System Gain Design

PROBLEM: Consider the system shown in Figure 8.21. Design the
value of gain, K, to yield 1.52% overshoot. Also estimate the
settling time, peak time, and steady-state error.

SOLUTION: The root locus is shown in Figure 8.22. Notice that this
is a third-order system with one zero. Breakaway points on the real
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FIGURE 8.22 Root locus for Example 8.8
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FIGURE 8.21 System for Example 8.8
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axis can occur between 0 and �1 and between �1:5 and �10, where the gain
reaches a peak. Using the root locus program and searching in these regions for
the peaks in gain, breakaway points are found at�0:62 with a gain of 2.511 and at
�4:4 with a gain of 28.89. A break-in point on the real axis can occur between
�1:5 and �10, where the gain reaches a local minimum. Using the root locus
program and searching in these regions for the local minimum gain, a break-in
point is found at �2:8 with a gain of 27.91.

Next assume that the system can be approximated by a second-order, under-
damped system without any zeros. A 1.52% overshoot corresponds to a damping
ratio of 0.8. Sketch this damping ratio line on the root locus, as shown in Figure 8.22.

Use the root locus program to search along the 0.8 damping ratio line for the
point where the angles from the open-loop poles and zeros add up to an odd multiple of
180�. This is the point where the root locus crosses the 0.8 damping ratio or 1.52 percent
overshoot line. Three points satisfy this criterion: �0:87� j0:66; � 1:19� j0:90, and
�4:6� j 3:45 with respective gains of 7.36, 12.79, and 39.64. For each point the settling
time and peak time are evaluated using

Ts ¼ 4

zvn
ð8:54Þ

where zvn is the real part of the closed-loop pole, and also using

Tp ¼ p

vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ð8:55Þ

where vn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
is the imaginary part of the closed-loop pole.

To test our assumption of a second-order system, we must calculate the
location of the third pole. Using the root locus program, search along the negative
extension of the real axis between the zero at �1:5 and the pole at �10 for points
that match the value of gain found at the second-order dominant poles. For each of
the three crossings of the 0.8 damping ratio line, the third closed-loop pole is at
�9:25, �8:6, and �1:8, respectively. The results are summarized in Table 8.4.

Finally, let us examine the steady-state error produced in each case. Note that
we have little control over the steady-state error at this point. When the gain is set
to meet the transient response, we have also designed the steady-state error. For
the example, the steady-state error specification is given by Kv and is calculated as

Kv ¼ lim
s!0

sGðsÞ ¼ Kð1:5Þ
ð1Þð10Þ ð8:56Þ

The results for each case are shown in Table 8.4.
How valid are the second-order assumptions? From Table 8.4, Cases 1 and 2

yield third closed-loop poles that are relatively far from the closed-loop zero. For
these two cases there is no pole-zero cancellation, and a second-order system

TABLE 8.4 Characteristics of the system of Example 8.8

Case
Closed-loop

poles
Closed-loop

zero Gain
Third

closed-loop pole
Settling
time

Peak
time Kv

1 �0:87� j0:66 �1:5þ j0 7.36 �9.25 4.60 4.76 1.1

2 �1:19� j0:90 �1:5þ j0 12.79 �8.61 3.36 3.49 1.9

3 �4:60� j3:45 �1:5þ j0 39.64 �1.80 0.87 0.91 5.9
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approximation is not valid. In Case 3, the third closed-loop pole and the closed-loop
zero are relatively close to each other, and a second-order system approximation
can be considered valid. In order to show this, let us make a partial-fraction
expansion of the closed-loop step response of Case 3 and see that the amplitude of
the exponential decay is much less than the amplitude of the underdamped
sinusoid. The closed-loop step response, C3ðsÞ, formed from the closed-loop poles
and zeros of Case 3 is

C3ðsÞ ¼ 39:64ðsþ 1:5Þ
sðsþ 1:8Þðsþ 4:6þ j3:45Þðsþ 4:6� j3:45Þ

¼ 39:64ðsþ 1:5Þ
sðsþ 1:8Þðs2 þ 9:2sþ 33:06Þ

¼ 1

s
þ 0:3

sðsþ 18Þ �
1:3ðsþ 4:6Þ þ 1:6ð3:45Þ
ðsþ 4:6Þ2þ3:452

ð8:57Þ

Thus, the amplitude of the exponential decay from the third pole is 0.3, and the
amplitude of the underdamped response from the dominant poles isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:32 þ 1:62
p

¼ 2:06. Hence, the dominant pole response is 6.9 times as large as
the nondominant exponential response, and we assume that a second-order
approximation is valid.

Using a simulation program, we obtain Figure 8.23, which shows comparisons
of step responses for the problem we have just solved. Cases 2 and 3 are plotted for
both the third-order response and a second-order response, assuming just the
dominant pair of poles calculated in the design problem. Again, the second-order
approximation was justified for Case 3, where there is a small difference in percent
overshoot. The second-order approximation is not valid for Case 2. Other than the
excess overshoot, Case 3 responses are similar.

Students who are using MATLAB should now run ch8p2 in Appendix B.
You will learn how to use MATLAB to enter a value of percent
overshoot from the keyboard. MATLAB will then draw the root locus
and overlay the percent overshoot line requested. You will then
interact with MATLAB and select the point of intersection of the
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FIGURE 8.23 Second- and third-order responses for Example 8.8: a. Case 2; b. Case 3
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root locus with the requested percent overshoot line. MATLAB
willrespondwiththevalueofgain,allclosed-looppolesatthat
gain, and a closed-loop step response plot corresponding to the
selected point. This exercise solves Example 8.8 using MATLAB.

Students who are using MATLAB may want to explore the SISO Design
Tool described in Appendix E at www.wiley.com/college/nise. The
SISO Design Tool is a convenient and intuitive way to obtain, view,
and interact with a system’s root locus. Section D.7 describes the
advantages of using the tool, while Section D.8 describes how to
use it. For practice, you may want to apply the SISO Design Tool to
some of the problems at the end of this chapter.

Skill-Assessment Exercise 8.6

PROBLEM: Given a unity feedback system that has the forward-path transfer
function

GðsÞ ¼ K

ðsþ 2Þðsþ 4Þðsþ 6Þ
do the following:

a. Sketch the root locus.

b. Using a second-order approximation, design the value of K to yield 10%
overshoot for a unit-step input.

c. Estimate the settling time, peak time, rise time, and steady-state error for the
value of K designed in (b).

d. Determine the validity of your second-order approximation.

ANSWERS:

a. See solution located at www.wiley.com/college/nise.

b. K ¼ 45:55

c. Ts ¼ 1:97 s; Tp ¼ 1:13 s; Tr ¼ 0:53s, and estepð1Þ ¼ 0:51

d. Second-order approximation is not valid.

The complete solution is located at www.wiley.com/college/nise.

8.8 Generalized Root Locus

Up to this point we have always drawn the root locus as a function of the forward-
path gain, K. The control system designer must often know how the closed-loop
poles change as a function of another parameter. For example, in Figure 8.24, the
parameter of interest is the open-loop pole at �p1. How can we obtain a root locus
for variations of the value of p1?
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If the function KG(s)H(s) is formed as

KGðsÞHðsÞ ¼ 10

ðsþ 2Þðsþ p1Þ
ð8:58Þ

the problem is that p1 is not a multiplying factor of the function, as the
gain, K, was in all of the previous problems. The solution to this
dilemma is to create an equivalent system where p1 appears as the
forward-path gain. Since the closed-loop transfer function’s denomi-
nator is 1þKGðsÞHðsÞ, we effectively want to create an equivalent
system whose denominator is 1þ p1GðsÞHðsÞ.

For the system of Figure 8.24, the closed-loop transfer function is

TðsÞ ¼ KGðsÞ
1þKGðsÞHðsÞ ¼

10

s2 þ ðp1 þ 2Þsþ 2p1 þ 10
ð8:59Þ

Isolating p1, we have

TðsÞ ¼ 10

s2 þ 2sþ 10þ p1ðsþ 2Þ ð8:60Þ

Converting the denominator to the form [1þ p1GðsÞHðsÞ] by dividing numerator
and denominator by the term not included with p1; s

2 þ 2sþ 10, we obtain

TðsÞ ¼
10

s2 þ 2sþ 10

1þ p1ðsþ 2Þ
s2 þ 2sþ 10

ð8:61Þ

Conceptually, Eq. (8.61) implies that we have a system for which

KGðsÞHðsÞ ¼ p1ðsþ 2Þ
s2 þ 2sþ 10

ð8:62Þ

The root locus can now be sketched as a function of p1, assuming the open-loop
system of Eq. (8.62). The final result is shown in Figure 8.25.
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10+

–

FIGURE 8.24 System requiring a root locus
calibrated with p1 as a parameter

FIGURE 8.25 Root locus for
the system of Figure 8.24, with
p1 as a parameter
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Skill-Assessment Exercise 8.7

PROBLEM: Sketch the root locus for variations in the value of p1, for a unity
feedback system that has the following forward transfer function:

GðsÞ ¼ 100

sðsþ p1Þ

ANSWER: The complete solution is at www.wiley.com/college/nise.

In this section, we learned to plot the root locus as a function of any system
parameter. In the next section we will learn how to plot root loci for positive-
feedback systems.

8.9 Root Locus for Positive-Feedback
Systems

The properties of the root locus were derived from the system of Figure
8.1. This is a negative-feedback system because of the negative summing
of the feedback signal to the input signal. The properties of the root locus
change dramatically if the feedback signal is added to the input rather
than subtracted. A positive-feedback system can be thought of as a
negative-feedback system with a negative value of H(s). Using this
concept, we find that the transfer function for the positive-feedback
system shown in Figure 8.26 is

TðsÞ ¼ KGðsÞ
1�KGðsÞHðsÞ ð8:63Þ

We now retrace the development of the root locus for the denominator of
Eq. (8.63). Obviously, a pole, s, exists when

KGðsÞHðsÞ ¼ 1 ¼ 1—k360� k ¼ 0;�1;�2;�3; . . . ð8:64Þ

Therefore, the root locus for positive-feedback systems consists of all points on the
s-plane where the angle of KGðsÞHðsÞ ¼ k360�. How does this relationship change
the rules for sketching the root locus presented in Section 8.4?

1. Number of branches. The same arguments as for negative feedback apply to this
rule. There is no change.

2. Symmetry. The same arguments as for negative feedback apply to this rule. There
is no change.

3. Real-axis segments. The development in Section 8.4 for the real-axis segments
led to the fact that the angles of G(s)H(s) along the real axis added up to either an
odd multiple of 180� or a multiple of 360�. Thus, for positive-feedback systems the

KG(s)

H(s)

C(s)R(s) +

+

+

FIGURE 8.26 Positive-feedback system
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root locus exists on the real axis along sections where the locus for negative-
feedback systems does not exist. The rule follows:

Real-axis segments: On the real axis, the root locus for positive-feedback systems
exists to the left of an even number of real-axis, finite open-loop poles and/or finite
open-loop zeros.

The change in the rule is the word even; for negative-feedback systems the locus
existed to the left of an odd number of real-axis, finite open-loop poles and/or
zeros.

4. Starting and ending points. You will find no change in the development in Section
8.4 if Eq. (8.63) is used instead of Eq. (8.12). Therefore, we have the following
rule.

Starting and ending points: The root locus for positive-feedback systems begins at
the finite and infinite poles of G(s)H(s) and ends at the finite and infinite zeros of
G(s)H(s).

5. Behavior at infinity. The changes in the development of the asymptotes begin at
Eq. (M.4) in Appendix M at www.wiley.com/college/nise since positive-feedback
systems follow the relationship in Eq. (8.64). That change yields a different slope
for the asymptotes. The value of the real-axis intercept for the asymptotes
remains unchanged. The student is encouraged to go through the development
in detail and show that the behavior at infinity for positive-feedback systems is
given by the following rule:

The root locus approaches straight lines as asymptotes as the locus approaches
infinity. Further, the equations of the asymptotes for positive-feedback systems are
given by the real-axis intercept, sa, and angle, ua, as follows:

sa ¼
P

finite poles�P finite zeros

# finite poles�# finite zeros
ð8:65Þ

ua ¼ k2p

# finite poles�# finite zeros
ð8:66Þ

where k ¼ 0; � 1; � 2; � 3; . . . , and the angle is given in radians with respect to
the positive extension of the real axis.

The change we see is that the numerator of Eq. (8.66) is k2p instead of
ð2kþ 1Þp.

What about other calculations? The imaginary-axis crossing can be found using
the root locus program. In a search of the jv-axis, you are looking for the point where
the angles add up to a multiple of 360� instead of an odd multiple of 180�. The
breakaway points are found by looking for the maximum value of K. The break-in
points are found by looking for the minimum value of K.

When we were discussing negative-feedback systems, we always made the root
locus plot for positive values of gain. Since positive-feedback systems can also be
thought of as negative-feedback systems with negative gain, the rules developed in
this section apply equally to negative-feedback systems with negative gain. Let us
look at an example.
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Example 8.9

Root Locus for a Positive-Feedback System

PROBLEM: Sketch the root locus as a function of negative gain, K, for the system
shown in Figure 8.11.

SOLUTION: The equivalent positive-feedback system found by pushing �1, asso-
ciated with K, to the right past the pickoff point is shown in Figure 8.27(a).

Therefore, as the gain of the equivalent system goes through positive values of K,
the root locus will be equivalent to that generated by the gain, K, of the original
system in Figure 8.11 as it goes through negative values.

The root locus exists on the real axis to the left of an even number of real,
finite open-loop poles and/or zeros. Therefore, the locus exists on the entire
positive extension of the real axis, between �1 and �2 and between �3 and
�4. Using Eq. (8.27), the sa intercept is found to be

sa ¼ ð�1� 2� 4Þ � ð�3Þ
4� 1

¼ � 4

3
ð8:67Þ

The angles of the lines that intersect at �4=3 are given by

ua ¼ k2p

# finite poles�# finite zeros
ð8:68aÞ

¼ 0 for k ¼ 0 ð8:68bÞ
¼ 2p=3 for k ¼ 1 ð8:68cÞ
¼ 4p=3 for k ¼ 2 ð8:68dÞ

The final root locus sketch is shown in Figure 8.27(b)
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FIGURE 8.27 a. Equivalent
positive-feedback system for
Example 8.9; b. root locus
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Skill-Assessment Exercise 8.8

PROBLEM: Sketch the root locus for the positive-feedback system whose forward
transfer function is

GðsÞ ¼ Kðsþ 4Þ
ðsþ 1Þðsþ 2Þðsþ 3Þ

The system has unity feedback.

ANSWER: The complete solution is at www.wiley.com/college/nise.

8.10 Pole Sensitivity

The root locus is a plot of the closed-loop poles as a system parameter is varied.
Typically, that system parameter is gain. Any change in the parameter changes the
closed-loop poles and, subsequently, the performance of the system. Many times the
parameter changes against our wishes, due to heat or other environmental condi-
tions. We would like to find out the extent to which changes in parameter values
affect the performance of our system.

The root locus exhibits a nonlinear relationship between gain and pole
location. Along some sections of the root locus, (1) very small changes in gain
yield very large changes in pole location and hence performance; along other
sections of the root locus, (2) very large changes in gain yield very small changes
in pole location. In the first case we say that the system has a high sensitivity to
changes in gain. In the second case, the system has a low sensitivity to changes in
gain. We prefer systems with low sensitivity to changes in gain.

In Section 7.7, we defined sensitivity as the ratio of the fractional change in a
function to the fractional change in a parameter as the change in the parameter
approaches zero. Applying the same definition to the closed-loop poles of a system
that vary with a parameter, we define root sensitivity as the ratio of the fractional
change in a closed-loop pole to the fractional change in a system parameter, such as
gain. Using Eq. (7.75), we calculate the sensitivity of a closed-loop pole, s, to gain, K:

Ss:K ¼ K

s

ds

dK
ð8:69Þ

where s is the current pole location, and K is the current gain. Using Eq. (8.69) and
converting the partials to finite increments, the actual change in the closed-loop
poles can be approximated as

Ds ¼ s Ss:Kð ÞDK
K

ð8:70Þ

where Ds is the change in pole location, and DK=K is the fractional change in the
gain, K. Let us demonstrate with an example. We begin with the characteristic
equation from which ds=dK can be found. Then, using Eq. (8.69) with the current
closed-loop pole, s, and its associated gain, K, we can find the sensitivity.
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Example 8.10

Root Sensitivity of a Closed-Loop System to Gain Variations

PROBLEM: Find the root sensitivity of the system in Figure 8.4 at s ¼ �9:47 and
�5þ j5. Also calculate the change in the pole location for a 10% change in K.

SOLUTION: The system’s characteristic equation, found from the closed-loop
transfer function denominator, is s2 þ 10sþK ¼ 0. Differentiating with respect
to K, we have

2s
ds

dK
þ 10

ds

dK
þ 1 ¼ 0 ð8:71Þ

from which
ds

dK
¼ �1

2sþ 10
ð8:72Þ

Substituting Eq. (8.72) into Eq. (8.69), the sensitivity is found to be

Ss:K ¼ K

s

�1

2sþ 10
ð8:73Þ

For s ¼ �9:47, Table 8.1 shows K ¼ 5. Substituting these values into Eq. (8.73)
yields Ss:K ¼ �0:059. The change in the pole location for a 10% change in K can be
found using Eq. (8.70), with s ¼ �9:47; DK=K ¼ 0:1, and Ss:K ¼ �0:059. Hence,
Ds ¼ 0:056, or the pole will move to the right by 0.056 units for a 10% change in K.

For s ¼ �5þ j5, Table 8.1 shows K ¼ 50. Substituting these values into Eq.
(8.73) yields Ss:K ¼ 1=ð1þ j1Þ ¼ ð1= ffiffiffi

2
p Þ—� 45�. The change in the pole location for

a 10% change in K can be found using Eq. (8.70), with s ¼ � 5þ j5; DK=K ¼ 0:1,
and Ss:K ¼ ð1=

ffiffiffi
2
p Þ—� 45�. Hence, Ds ¼ �j5, or the pole will move vertically by 0.5

unit for a 10% change in K.
In summary, then, atK ¼ 5; Ss:K ¼ �0:059. AtK ¼ 50; Ss:K ¼ ð1=

ffiffiffi
2
p Þ—� 45�.

Comparing magnitudes, we conclude that the root locus is less sensitive to changes in
gain at the lower value of K. Notice that root sensitivity is a complex quantity
possessing both the magnitude and direction information from which the change in
poles can be calculated.

Skill-Assessment Exercise 8.9

PROBLEM: A negative unity feedback system has the forward transfer function

GðsÞ ¼ Kðsþ 1Þ
sðsþ 2Þ

If K is set to 20, find the changes in closed-loop pole location for a 5% change in K.

ANSWER: For the closed-loop pole at �21:05; Ds ¼ �0:9975; for the closed-loop
pole at �0:95; Ds ¼ �0:0025.

The complete solution is at www.wiley.com/college/nise.
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Case Studies

Antenna Control: Transient Design via Gain

The main thrust of this chapter is to demonstrate design of higher-order systems
(higher than two) through gain adjustment. Specifically, we are interested in
determining the value of gain required to meet transient response requirements,
such as percent overshoot, settling time, and peak time. The following case study
emphasizes this design procedure, using the root locus.

PROBLEM: Given the antenna azimuth position control system shown on the front
endpapers, Configuration 1, find the preamplifier gain required for 25% overshoot.

SOLUTION: The block diagram for the system was derived in the Case Studies section in
Chapter 5 and is shown in Figure 5.34(c), where GðsÞ ¼ 6:63K=½sðsþ 1:71Þðsþ 100Þ�.

First a sketch of the root locus is made to orient the designer. The real-axis
segments are between the origin and �1:71 and from �100 to infinity. The locus
begins at the open-loop poles, which are all on the real axis at the origin,�1:71, and
�100. The locus then moves toward the zeros at infinity by following asymptotes
that, from Eqs. (8.27) and (8.28), intersect the real axis at �33:9 at angles of 60�,
180�, and �60�. A portion of the root locus is shown in Figure 8.28.

From Eq. (4.39), 25% overshoot corresponds to a damping ratio of 0.404. Now
draw a radial line from the origin at an angle of cos�1 z ¼ 113:8. The intersection of
this line with the root locus locates the system’s dominant, second-order closed-
loop poles. Using the root locus program discussed in Appendix H.2 at www.wiley
.com/college/nise to search the radial line for 180� yields the closed-loop dominant
poles as 2:063 —113:8� ¼ �0:833� j1:888. The gain value yields 6:63K ¼ 425:7,
from which K ¼ 64:21.

FIGURE 8.28 Portion of the
root locus for the antenna
control system
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Checking our second-order assumption, the third pole must be to the left of
the open-loop pole at �100 and is thus greater than five times the real part of
the dominant pole pair, which is �0:833. The second-order approximation is
thus valid.

The computer simulation of the closed-loop system’s step response in
Figure 8.29 shows that the design requirement of 25% overshoot is met.

CHALLENGE: You are now given a problem to test your knowledge of this chapter’s
objectives. Referring to the antenna azimuth position control system shown on the
front endpapers, Configuration 2, do the following:

a. Find the preamplifier gain, K, required for an 8-second settling time.

b. Repeat, using MATLAB.

UFSS Vehicle: Transient Design via Gain

In this case study, we apply the root locus to the UFSS vehicle pitch control loop.
The pitch control loop is shown with both rate and position feedback on the back
endpapers. In the example that follows, we plot the root locus without the rate
feedback and then with the rate feedback. We will see the stabilizing effect that rate
feedback has upon the system.

PROBLEM: Consider the block diagram of the pitch control loop for the UFSS
vehicle shown on the back endpapers (Johnson, 1980).

a. If K2 ¼ 0 (no rate feedback), plot the root locus for the system as a function of
pitch gain, K1, and estimate the settling time and peak time of the closed-loop
response with 20% overshoot.

b. Let K2 ¼ K1 (add rate feedback) and repeat a.
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0

FIGURE 8.29 Step response of the gain-adjusted antenna control system
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SOLUTION:

a. Letting K2 ¼ 0, the open-loop transfer function is

GðsÞHðsÞ ¼ 0:25K1ðsþ 0:435Þ
ðsþ 1:23Þðsþ 2Þðs2 þ 0:226sþ 0:0169Þ ð8:74Þ

from which the root locus is plotted in Figure 8.30. Searching along the 20%
overshoot line evaluated from Eq. (4.39), we find the dominant second-order
poles to be �0:202� j0:394 with a gain of K ¼ 0:25K1 ¼ 0:706, or K1 ¼ 2:824.

From the real part of the dominant pole, the settling time is estimated to be
Ts ¼ 4=0:202 ¼ 19:8 seconds. From the imaginary part of the dominant pole, the
peak time is estimated to be Tp ¼ p=0:394 ¼ 7:97 seconds. Since our estimates
are based upon a second-order assumption, we now test our assumption by
finding the third closed-loop pole location between �0:435 and �1:23 and the
fourth closed-loop pole location between �2 and infinity. Searching each of
these regions for a gain of K ¼ 0:706, we find the third and fourth poles at
�0:784 and �2:27, respectively. The third pole, at �0:784, may not be close
enough to the zero at �0:435, and thus the system should be simulated. The
fourth pole, at �2:27, is 11 times as far from the imaginary axis as the dominant
poles and thus meets the requirement of at least five times the real part of the
dominant poles.

A computer simulation of the step response for the system, which is shown
in Figure 8.31, shows a 29% overshoot above a final value of 0:88, approximately
20-second settling time, and a peak time of approximately 7.5 seconds.
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FIGURE 8.30 Root locus of pitch control loop without rate feedback, UFSS vehicle
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b. Adding rate feedback by letting K2 ¼ K1 in the pitch control system shown on
the back endpapers, we proceed to find the new open-loop transfer function.
Pushing �K1 to the right past the summing junction, dividing the pitch rate
sensor by �K1, and combining the two resulting feedback paths obtaining
ðsþ 1Þ give us the following open-loop transfer function:

GðsÞHðsÞ ¼ 0:25K1ðsþ 0:435Þðsþ 1Þ
ðsþ 1:23Þðsþ 2Þðs2 þ 0:226sþ 0:0169Þ ð8:75Þ

Notice that the addition of rate feedback adds a zero to the open-loop transfer
function. The resulting root locus is shown in Figure 8.32. Notice that this root
locus, unlike the root locus in a, is stable for all values of gain, since the locus
does not enter the right half of the s-plane for any value of positive gain,
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FIGURE 8.31 Computer
simulation of step response of
pitch control loop without rate
feedback, UFSS vehicle
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K ¼ 0:25K1. Also notice that the intersection with the 20% overshoot line is
much farther from the imaginary axis than is the case without rate feedback,
resulting in a faster response time for the system.

The root locus intersects the 20% overshoot line at �1:024� j1:998 with a
gain of K ¼ 0:25K1 ¼ 5:17, or K1 ¼ 20:68. Using the real and imaginary parts of
the dominant pole location, the settling time is predicted to be Ts ¼ 4=1:024 ¼
3:9 seconds, and the peak time is estimated to be Tp ¼ p=1:998 ¼ 1:57 seconds.
The new estimates show considerable improvement in the transient response as
compared to the system without the rate feedback.

Now we test our second-order approximation by finding the location of the
third and fourth poles between �0:435 and �1. Searching this region for a gain
of K ¼ 5:17, we locate the third and fourth poles at approximately �0:5 and
�0:91. Since the zero at�1 is a zero of H(s), the student can verify that this zero
is not a zero of the closed-loop transfer function. Thus, although there may be
pole-zero cancellation between the closed-loop pole at �0:5 and the closed-
loop zero at �0:435, there is no closed-loop zero to cancel the closed-loop pole
at �0:91.2 Our second-order approximation is not valid.

A computer simulation of the system with rate feedback is shown in
Figure 8.33. Although the response shows that our second-order approximation
is invalid, it still represents a considerable improvement in performance over
the system without rate feedback; the percent overshoot is small, and the
settling time is about 6 seconds instead of about 20 seconds.

CHALLENGE: You are now given a problem to test your knowledge of this chapter’s
objectives. For the UFSS vehicle (Johnson, 1980) heading control system shown on the
back endpapers, and introduced in the case study challenge in Chapter 5, do the
following:

a. Let K2 ¼ K1 and find the value of K1 that yields 10% overshoot.

b. Repeat, using MATLAB.

2 The zero at �1 shown on the root locus plot of Figure 8.32 is an open-loop zero since it comes from the
numerator of H(s).

FIGURE 8.33 Computer
simulation of step response
of pitch control loop with rate
feedback, UFSS vehicle
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We have concluded the chapter with two case studies showing the use and
application of the root locus. We have seen how to plot a root locus and estimate
the transient response by making a second-order approximation. We saw that the
second-order approximation held when rate feedback was not used for the UFSS.
When rate feedback was used, an open-loop zero from H(s) was introduced. Since it
was not a closed-loop zero, there was no pole-zero cancellation, and a second-order
approximation could not be justified. In this case, however, the transient response
with rate feedback did represent an improvement in transient response over the
system without rate feedback. In subsequent chapters we will see why rate feedback
yields an improvement. We will also see other methods of improving the transient
response.

Summary

In this chapter, we examined the root locus, a powerful tool for the analysis and design
of control systems. The root locus empowers us with qualitative and quantitative
information about the stability and transient response of feedback control systems.
The root locus allows us to find the poles of the closed-loop system by starting from the
open-loop system’s poles and zeros. It is basically a graphical root-solving technique.

We looked at ways to sketch the root locus rapidly, even for higher-order
systems. The sketch gave us qualitative information about changes in the transient
response as parameters were varied. From the locus we were able to determine
whether a system was unstable for any range of gain.

Next we developed the criterion for determining whether a point in the s-plane
was on the root locus: The angles from the open-loop zeros, minus the angles from the
open-loop poles drawn to the point in the s-plane, add up to an odd multiple of 180�.

The computer program discussed in Appendix G.2 at www.wiley.com/college/
nise helps us to search rapidly for points on the root locus. This program allows us to
find points and gains to meet certain transient response specifications as long as we
are able to justify a second-order assumption for higher-order systems. Other
computer programs, such as MATLAB, plot the root locus and allow the user to
interact with the display to determine transient response specifications and system
parameters.

Our method of design in this chapter is gain adjustment. We are limited to
transient responses governed by the poles on the root locus. Transient responses
represented by pole locations outside of the root locus cannot be obtained by a
simple gain adjustment. Further, once the transient response has been established,
the gain is set, and so is the steady-state error performance. In other words, by a
simple gain adjustment, we have to trade off between a specified transient response
and a specified steady-state error. Transient response and steady-state error cannot
be designed independently with a simple gain adjustment.

We also learned how to plot the root locus against system parameters other
than gain. In order to make this root locus plot, we must first convert the closed-loop
transfer function into an equivalent transfer function that has the desired system
parameter in the same position as the gain. The chapter discussion concluded with
positive-feedback systems and how to plot the root loci for these systems.

The next chapter extends the concept of the root locus to the design of
compensation networks. These networks have as an advantage the separate design
of transient performance and steady-state error performance.
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