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(2) describe quantitatively the transient response of the open-loop system;
(3) derive the expression for the open-loop angular velocity output for a step
voltage input; (4) obtain the open-loop state-space representation; (5) plot the
open-loop velocity step response using a computer simulation.

� Given the block diagram for the Unmanned Free-Swimming Submersible (UFSS)
vehicle’s pitch control system shown on the back endpapers, you will be able to
predict, find, and plot the response of the vehicle dynamics to a step input
command. Further, you will be able to evaluate the effect of system zeros and
higher-order poles on the response. You also will be able to evaluate the roll
response of a ship at sea.

4.1 Introduction

In Chapter 2, we saw how transfer functions can represent linear, time-invariant
systems. In Chapter 3, systems were represented directly in the time domain via the
state and output equations. After the engineer obtains a mathematical representa-
tion of a subsystem, the subsystem is analyzed for its transient and steady-state
responses to see if these characteristics yield the desired behavior. This chapter is
devoted to the analysis of system transient response.

It may appear more logical to continue with Chapter 5, which covers the
modeling of closed-loop systems, rather than to break the modeling sequence with
the analysis presented here in Chapter 4. However, the student should not continue
too far into system representation without knowing the application for the effort
expended. Thus, this chapter demonstrates applications of the system representation
by evaluating the transient response from the system model. Logically, this approach
is not far from reality, since the engineer may indeed want to evaluate the response
of a subsystem prior to inserting it into the closed-loop system.

After describing a valuable analysis and design tool, poles and zeros, we begin
analyzing our models to find the step response of first- and second-order systems.
The order refers to the order of the equivalent differential equation representing the
system—the order of the denominator of the transfer function after cancellation of
common factors in the numerator or the number of simultaneous first-order
equations required for the state-space representation.

4.2 Poles, Zeros, and System Response

The output response of a system is the sum of two responses: the forced response and
the natural response.1 Although many techniques, such as solving a differential
equation or taking the inverse Laplace transform, enable us to evaluate this output
response, these techniques are laborious and time-consuming. Productivity is aided
by analysis and design techniques that yield results in a minimum of time. If the
technique is so rapid that we feel we derive the desired result by inspection, we
sometimes use the attribute qualitative to describe the method. The use of poles and

1 The forced response is also called the steady-state response or particular solution. The natural response is
also called the homogeneous solution.
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zeros and their relationship to the time response of a system is such a technique.
Learning this relationship gives us a qualitative ‘‘handle’’ on problems. The concept
of poles and zeros, fundamental to the analysis and design of control systems,
simplifies the evaluation of a system’s response. The reader is encouraged to master
the concepts of poles and zeros and their application to problems throughout this
book. Let us begin with two definitions.

Poles of a Transfer Function
The poles of a transfer function are (1) the values of the Laplace transform variable,
s, that cause the transfer function to become infinite or (2) any roots of the
denominator of the transfer function that are common to roots of the numerator.

Strictly speaking, the poles of a transfer function satisfy part (1) of the
definition. For example, the roots of the characteristic polynomial in the denomina-
tor are values of s that make the transfer function infinite, so they are thus poles.
However, if a factor of the denominator can be canceled by the same factor in the
numerator, the root of this factor no longer causes the transfer function to become
infinite. In control systems, we often refer to the root of the canceled factor in the
denominator as a pole even though the transfer function will not be infinite at this
value. Hence, we include part (2) of the definition.

Zeros of a Transfer Function
The zeros of a transfer function are (1) the values of the Laplace transform variable,
s, that cause the transfer function to become zero, or (2) any roots of the numerator
of the transfer function that are common to roots of the denominator.

Strictly speaking, the zeros of a transfer function satisfy part (1) of this
definition. For example, the roots of the numerator are values of s that make the
transfer function zero and are thus zeros. However, if a factor of the numerator can
be canceled by the same factor in the denominator, the root of this factor no longer
causes the transfer function to become zero. In control systems, we often refer to the
root of the canceled factor in the numerator as a zero even though the transfer
function will not be zero at this value. Hence, we include part (2) of the definition.

Poles and Zeros of a First-Order System: An Example
Given the transfer function G(s) in Figure 4.1(a), a pole exists at s ¼ �5, and a zero
exists at �2. These values are plotted on the complex s-plane in Figure 4.1(b), using
an� for the pole and a � for the zero. To show the properties of the poles and zeros,
let us find the unit step response of the system. Multiplying the transfer function of
Figure 4.1(a) by a step function yields

CðsÞ ¼ ðsþ 2Þ
sðsþ 5Þ ¼

A

s
þ B

sþ 5
¼ 2=5

s
þ 3=5

sþ 5
ð4:1Þ

where

A ¼ ðsþ 2Þ
ðsþ 5Þ

����
s!0

¼ 2

5

B ¼ ðsþ 2Þ
s

����
s!�5

¼ 3

5

Thus,

cðtÞ ¼ 2

5
þ 3

5
e�5t ð4:2Þ
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From the development summarized in Figure 4.1(c), we draw the following
conclusions:

1. A pole of the input function generates the form of the forced response (that is, the
pole at the origin generated a step function at the output).

2. A pole of the transfer function generates the form of the natural response (that is,
the pole at �5 generated e�5t).

3. A pole on the real axis generates an exponential response of the form e�at, where
�a is the pole location on the real axis. Thus, the farther to the left a pole is on the
negative real axis, the faster the exponential transient response will decay to
zero (again, the pole at �5 generated e�5t; see Figure 4.2 for the general case).

4. The zeros and poles generate the amplitudes for both the forced and natural
responses (this can be seen from the calculation of A and B in Eq. (4.1)).

Let us now look at an example that demonstrates the technique of using poles
to obtain the form of the system response. We will learn to write the form of the
response by inspection. Each pole of the system transfer function that is on the real
axis generates an exponential response that is a component of the natural response.
The input pole generates the forced response.
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FIGURE 4.1 a. System showing input and output; b. pole-zero plot of the system; c. evolution
of a system response. Follow blue arrows to see the evolution of the response component
generated by the pole or zero.
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Example 4.1

Evaluating Response Using Poles

PROBLEM: Given the system of Figure 4.3, write the output, c(t), in general terms.
Specify the forced and natural parts of the solution.

SOLUTION: By inspection, each system pole generates an exponen-
tial as part of the natural response. The input’s pole generates the
forced response. Thus,

C sð Þ � K1

s

Forced

response

þ K2

sþ 2
þ K3

sþ 4
þ K4

sþ 5

Natural

response

ð4:3Þ

Taking the inverse Laplace transform, we get

cðtÞ � K1

Forced

response

þK2e�2t þK3e�4t þK4e�5t

Natural

response

ð4:4Þ

Skill-Assessment Exercise 4.1

PROBLEM: A system has a transfer function, GðsÞ ¼ 10ðsþ 4Þðsþ 6Þ
ðsþ 1Þðsþ 7Þðsþ 8Þðsþ 10Þ.

Write, by inspection, the output, c(t), in general terms if the input is a unit step.

ANSWER: cðtÞ � Aþ Be�t þ Ce�7t þDe�8t þ Ee�10t

In this section, we learned that poles determine the nature of the time
response: Poles of the input function determine the form of the forced response,
and poles of the transfer function determine the form of the natural response.
Zeros and poles of the input or transfer function contribute to the amplitudes of the
component parts of the total response. Finally, poles on the real axis generate
exponential responses.
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FIGURE 4.2 Effect of a real-axis pole upon transient response.
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FIGURE 4.3 System for Example 4.1
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4.3 First-Order Systems

We now discuss first-order systems without zeros to define a
performance specification for such a system. A first-order system
without zeros can be described by the transfer function shown in
Figure 4.4(a). If the input is a unit step, where RðsÞ ¼ 1=s, the Laplace
transform of the step response is C(s), where

CðsÞ ¼ RðsÞGðsÞ ¼ a

sðsþ aÞ ð4:5Þ

Taking the inverse transform, the step response is given by

cðtÞ ¼ cf ðtÞ þ cnðtÞ ¼ 1 � e�at ð4:6Þ

where the input pole at the origin generated the forced response cf ðtÞ ¼ 1, and the
system pole at �a, as shown in Figure 4.4(b), generated the natural response
cnðtÞ ¼ �e�at. Equation (4.6) is plotted in Figure 4.5.

Let us examine the significance of parameter a, the only parameter needed to
describe the transient response. When t ¼ 1=a,

e�atjt¼1=a ¼ e�1 ¼ 0:37 ð4:7Þ
or

cðtÞjt¼1=a ¼ 1 � e�atjt¼1=a ¼ 1 � 0:37 ¼ 0:63 ð4:8Þ
We now use Eqs. (4.6), (4.7), and (4.8) to define three transient response

performance specifications.

Time Constant
We call 1=a the time constant of the response. From Eq. (4.7), the time constant can
be described as the time for e�at to decay to 37% of its initial value. Alternately, from
Eq. (4.8) the time constant is the time it takes for the step response to rise to 63% of
its final value (see Figure 4.5).
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FIGURE 4.4 a. First-order system; b. pole plot

FIGURE 4.5 First-order system
response to a unit step
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Virtual Experiment 4.1
First-Order

Open-Loop Systems

Put theory into practice and find
a first-order transfer function
representing the Quanser Rotary
Servo. Then validate the model
by simulating it in LabVIEW.
Such a servo motor is used in
mechatronic gadgets such as
cameras.

Virtual experiments are found
on WileyPLUS.
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