(2) describe quantitatively the transient response of the open-loop system;(3) derive the expression for the open-loop angular velocity output for a step voltage input;(4) obtain the open-loop state-space representation;(5) plot the open-loop velocity step response using a computer simulation.

• Given the block diagram for the Unmanned Free-Swimming Submersible (UFSS) vehicle's pitch control system shown on the back endpapers, you will be able to predict, find, and plot the response of the vehicle dynamics to a step input command. Further, you will be able to evaluate the effect of system zeros and higher-order poles on the response. You also will be able to evaluate the roll response of a ship at sea.

4.1 Introduction

In Chapter 2, we saw how transfer functions can represent linear, time-invariant systems. In Chapter 3, systems were represented directly in the time domain via the state and output equations. After the engineer obtains a mathematical representation of a subsystem, the subsystem is analyzed for its transient and steady-state responses to see if these characteristics yield the desired behavior. This chapter is devoted to the analysis of system transient response.

It may appear more logical to continue with Chapter 5, which covers the modeling of closed-loop systems, rather than to break the modeling sequence with the analysis presented here in Chapter 4. However, the student should not continue too far into system representation without knowing the application for the effort expended. Thus, this chapter demonstrates applications of the system representation by evaluating the transient response from the system model. Logically, this approach is not far from reality, since the engineer may indeed want to evaluate the response of a subsystem prior to inserting it into the closed-loop system.

After describing a valuable analysis and design tool, poles and zeros, we begin analyzing our models to find the step response of first- and second-order systems. The order refers to the order of the equivalent differential equation representing the system—the order of the denominator of the transfer function after cancellation of common factors in the numerator or the number of simultaneous first-order equations required for the state-space representation.

4.2 Poles, Zeros, and System Response

The output response of a system is the sum of two responses: the *forced response* and the *natural response*.¹ Although many techniques, such as solving a differential equation or taking the inverse Laplace transform, enable us to evaluate this output response, these techniques are laborious and time-consuming. Productivity is aided by analysis and design techniques that yield results in a minimum of time. If the technique is so rapid that we feel we derive the desired result by inspection, we sometimes use the attribute *qualitative* to describe the method. The use of poles and

¹ The forced response is also called the *steady-state response* or *particular solution*. The natural response is also called the *homogeneous solution*.

zeros and their relationship to the time response of a system is such a technique. Learning this relationship gives us a qualitative "handle" on problems. The concept of poles and zeros, fundamental to the analysis and design of control systems, simplifies the evaluation of a system's response. The reader is encouraged to master the concepts of poles and zeros and their application to problems throughout this book. Let us begin with two definitions.

Poles of a Transfer Function

The *poles* of a transfer function are (1) the values of the Laplace transform variable, *s*, that cause the transfer function to become infinite or (2) any roots of the denominator of the transfer function that are common to roots of the numerator.

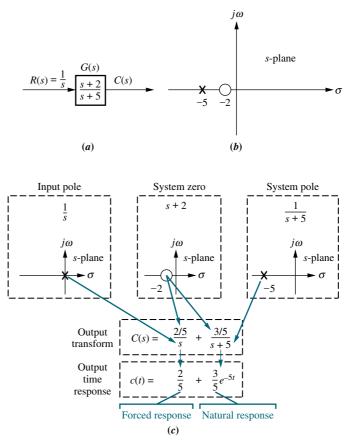
Strictly speaking, the poles of a transfer function satisfy part (1) of the definition. For example, the roots of the characteristic polynomial in the denominator are values of *s* that make the transfer function infinite, so they are thus poles. However, if a factor of the denominator can be canceled by the same factor in the numerator, the root of this factor no longer causes the transfer function to become infinite. In control systems, we often refer to the root of the canceled factor in the denominator as a pole even though the transfer function will not be infinite at this value. Hence, we include part (2) of the definition.

Zeros of a Transfer Function

The *zeros* of a transfer function are (1) the values of the Laplace transform variable, *s*, that cause the transfer function to become zero, or (2) any roots of the numerator of the transfer function that are common to roots of the denominator.

Strictly speaking, the zeros of a transfer function satisfy part (1) of this definition. For example, the roots of the numerator are values of s that make the transfer function zero and are thus zeros. However, if a factor of the numerator can be canceled by the same factor in the denominator, the root of this factor no longer causes the transfer function to become zero. In control systems, we often refer to the root of the canceled factor in the numerator as a zero even though the transfer function will not be zero at this value. Hence, we include part (2) of the definition.

Poles and Zeros of a First-Order System: An Example


Given the transfer function G(s) in Figure 4.1(*a*), a pole exists at s = -5, and a zero exists at -2. These values are plotted on the complex *s*-plane in Figure 4.1(*b*), using an × for the pole and a \bigcirc for the zero. To show the properties of the poles and zeros, let us find the unit step response of the system. Multiplying the transfer function of Figure 4.1(*a*) by a step function yields

$$C(s) = \frac{(s+2)}{s(s+5)} = \frac{A}{s} + \frac{B}{s+5} = \frac{2/5}{s} + \frac{3/5}{s+5}$$
(4.1)

where

$$A = \frac{(s+2)}{(s+5)}\Big|_{s\to 0} = \frac{2}{5}$$
$$B = \frac{(s+2)}{s}\Big|_{s\to -5} = \frac{3}{5}$$

$$c(t) = \frac{2}{5} + \frac{3}{5}e^{-5t} \tag{4.2}$$

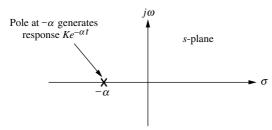


FIGURE 4.1 a. System showing input and output; **b.** pole-zero plot of the system; **c.** evolution of a system response. Follow blue arrows to see the evolution of the response component generated by the pole or zero.

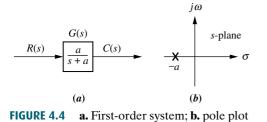
From the development summarized in Figure 4.1(c), we draw the following conclusions:

- **1.** A pole of the input function generates the form of the *forced response* (that is, the pole at the origin generated a step function at the output).
- 2. A pole of the transfer function generates the form of the *natural response* (that is, the pole at -5 generated e^{-5t}).
- 3. A pole on the real axis generates an *exponential* response of the form $e^{-\alpha t}$, where $-\alpha$ is the pole location on the real axis. Thus, the farther to the left a pole is on the negative real axis, the faster the exponential transient response will decay to zero (again, the pole at -5 generated e^{-5t} ; see Figure 4.2 for the general case).
- 4. The zeros and poles generate the *amplitudes* for both the forced and natural responses (this can be seen from the calculation of A and B in Eq. (4.1)).

Let us now look at an example that demonstrates the technique of using poles to obtain the form of the system response. We will learn to write the form of the response by inspection. Each pole of the system transfer function that is on the real axis generates an exponential response that is a component of the natural response. The input pole generates the forced response.

Example 4.1 **Evaluating Response Using Poles PROBLEM:** Given the system of Figure 4.3, write the output, c(t), in general terms. Specify the forced and natural parts of the solution. $R(s) = \frac{1}{s}$ (s + 3)C(s)**SOLUTION:** By inspection, each system pole generates an exponen-(s+2)(s+4)(s+5)tial as part of the natural response. The input's pole generates the FIGURE 4.3 System for Example 4.1 forced response. Thus, $C(s) \equiv \frac{K_1}{s} + \frac{K_2}{s+2} + \frac{K_3}{s+4} + \frac{K_4}{s+5}$ (4.3)Forced response response Taking the inverse Laplace transform, we get $c(t) \equiv \underbrace{K_1}_{\text{Forced}} + \underbrace{K_{2e^{-2t}}}_{\text{Natural}} + \underbrace{K_{4e^{-5t}}}_{\text{Natural}}$ (4.4)response response

Skill-Assessment Exercise 4.1


PROBLEM: A system has a transfer function, $G(s) = \frac{10(s+4)(s+6)}{(s+1)(s+7)(s+8)(s+10)}$.

Write, by inspection, the output, c(t), in general terms if the input is a unit step.

ANSWER: $c(t) \equiv A + Be^{-t} + Ce^{-7t} + De^{-8t} + Ee^{-10t}$

In this section, we learned that poles determine the nature of the time response: Poles of the input function determine the form of the forced response, and poles of the transfer function determine the form of the natural response. Zeros and poles of the input or transfer function contribute to the amplitudes of the component parts of the total response. Finally, poles on the real axis generate exponential responses.

4.3 First-Order Systems

We now discuss first-order systems without zeros to define a performance specification for such a system. A first-order system without zeros can be described by the transfer function shown in Figure 4.4(*a*). If the input is a unit step, where R(s) = 1/s, the Laplace transform of the step response is C(s), where

$$C(s) = R(s)G(s) = \frac{a}{s(s+a)}$$
(4.5)

Taking the inverse transform, the step response is given by

$$c(t) = c_f(t) + c_n(t) = 1 - e^{-at}$$
(4.6)

Virtual Experiment 4.1 First-Order Open-Loop Systems

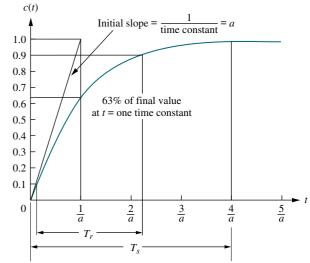
Put theory into practice and find a first-order transfer function representing the Quanser Rotary Servo. Then validate the model by simulating it in LabVIEW. Such a servo motor is used in mechatronic gadgets such as cameras.

Virtual experiments are found on WileyPLUS.

where the input pole at the origin generated the forced response $c_f(t) = 1$, and the system pole at -a, as shown in Figure 4.4(b), generated the natural response $c_n(t) = -e^{-at}$. Equation (4.6) is plotted in Figure 4.5.

Let us examine the significance of parameter a, the only parameter needed to describe the transient response. When t = 1/a,

or


$$e^{-at}|_{t=1/a} = e^{-1} = 0.37 \tag{4.7}$$

$$c(t)|_{t=1/a} = 1 - e^{-at}|_{t=1/a} = 1 - 0.37 = 0.63$$
(4.8)

We now use Eqs. (4.6), (4.7), and (4.8) to define three transient response performance specifications.

Time Constant

We call 1/a the *time constant* of the response. From Eq. (4.7), the time constant can be described as the time for e^{-at} to decay to 37% of its initial value. Alternately, from Eq. (4.8) the time constant is the time it takes for the step response to rise to 63% of its final value (see Figure 4.5).

FIGURE 4.5 First-order system response to a unit step