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G example 2.3 D

Laplace Transform Solution of a Differential Equation

PROBLEM: Given the following differential equation, solve for y() if all initial
conditions are zero. Use the Laplace transform.

Py . dy

— 4+ 12—+ 32y = 32u(t 2.14

SOLUTION: Substitute the corresponding F(s) for each term in Eq. (2.14), using
Item 2 in Table 2.1, Items 7 and 8 in Table 2.2, and the initial conditions of y(¢) and
dy(t)/dt given by y(0—) =0 and y(0—) =0, respectively. Hence, the Laplace
transform of Eq. (2.14) is

s?Y (s) + 12sY (s) + 32Y(s) = 3s—2 (2.15)

Solving for the response, Y(s), yields

32 32
Y(s) = S(2+125+32) s(s+4)(s+8) (2.16)

To solve for y(¢), we notice that Eq. (2.16) does not match any of the terms in Table
2.1. Thus, we form the partial-fraction expansion of the right-hand term and match
each of the resulting terms with F(s) in Table 2.1. Therefore,
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where, from Eq. (2.13),
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Hence,
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Y(s) = - — 2.19
e Py R Fo (2.19)

Since each of the three component parts of Eq. (2.19) is represented as an
F(s) in Table 2.1, y(¢) is the sum of the inverse Laplace transforms of each term.
Hence,

y(t) = (1 =2 + e u(r) (2.20)
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MATLAB

Chapter 2 Modeling in the Frequency Domain

StudentswhoareusingMATLAB shouldnowrunch2pl throughch2p8
inAppendix B. This is your first MATLAB exercise. Youwill learn how
to use MATLAB to (1) represent polynomials, (2) find roots of poly-
nomials, (3) multiply polynomials, and (4) find partial-fraction
expansions. Finally, Example 2.3 will be solved using MATLAB.

Trylt 2.1

Use the following MATLAB
and Control System Toolbox
statement to form the linear,
time-invariant (LTI) transfer
function of Eq. (2.22).

F=zpk(], -1 =2 =2], 2)

Trylt 2.2

Use the following MATLAB

statements to help you get

Eq. (2.26).

numf=2;

denf=poly([—-1 —2 =2]);

[k,p, k]l =residue...
(numf, denf)

The u(f) in Eq. (2.20) shows that the response is zero until £ = 0. Unless
otherwise specified, all inputs to systems in the text will not start until ¢ = 0. Thus,
output responses will also be zero until ¢ = 0. For convenience, we will leave off the
u(t) notation from now on. Accordingly, we write the output response as

y(t)=1—2e 4 48 (2.21)
Case 2. Roots of the Denominator of F(s) Are Real and Repeated An example of
an F(s) with real and repeated roots in the denominator is

2

Fis) = 6+ D(s+2)

(2.22)

The roots of (s + 2)2 in the denominator are repeated, since the factor is raised to an
integer power higher than 1. In this case, the denominator root at —2 is a multiple
root of multiplicity 2.

We can write the partial-fraction expansion as a sum of terms, where each
fact %g HOIPQ' F fo lﬁei ipator of each term. In addition, each
mulm (Qen ra adoﬁﬁ‘\ ﬁl@gtsisting of denominator factors of
reduced multiplicity. For example, if

2 K K, K;

F(S):(s+1)(s+2)2:(S+1)+(s+2)2+(5+2)

(2.23)

then K; =2, which can be found as previously described. K, can be isolated by
multiplying Eq. (2.23) by (s + 2)% yielding

K
(5+2)° ——+ Ky + (s +2)K3

Y (2.24)

s+l

Letting s approach —2, K, = —2. To find K3 we see that if we differentiate Eq. (2.24)
with respect to s,

=2 _ b+ 2;;‘ K1+ Ks (2.25)

(s+17° (s+1

K3 is isolated and can be found if we let s approach —2. Hence, K3 = —2.
Each component part of Eq. (2.23) is an F(s) in Table 2.1; hence, f(¢) is the sum
of the inverse Laplace transform of each term, or
f(t) =2e" —2te ™ —2e7% (2.26)

If the denominator root is of higher multiplicity than 2, successive differentiation
would isolate each residue in the expansion of the multiple root.
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In general, then, given an F(s) whose denominator has real and repeated roots,
a partial-fraction expansion,

N(s
=

_ N(s)

(s+p1)(s+py)--(s+pu)
K K> K,
S (s+p) - (s+p)" ot (s+p1)

K. K,
(s+p) " (s+p) (2.27)

can be made if the order of N(s) is less than the order of D(s) and the repeated roots
are of multiplicity r at —p,. To find K; through K, for the roots of multiplicity greater
than unity, first multiply Eq. (2.27) by (s + p,)" getting Fy(s), which is

Fi(s) = (s+p1)F(s)
_ (s +p1)'N(s)
(s4+p1) (s+py)---(s+p,)
=Ki+ (s +p)Ka+ (s+p) Kz +-+ (s +p) 'K,
K,(s+py) K, (s+p;)
(s +p2) (s+py) (2.28)

Immediately, we can solve for K 1&9@'915‘&0? }DE Vgan%gr% if we

differentiate Eq. (2.28) with respect to s and then let s approach —p;. Subsequent
differentiation will allow us to find K3 through K,. The general expression for K
through K, for the multiple roots is

1 d7'Fy(s)
(i—1)! dsi!

K; = i=1,2,...,r, Ol=1 (2.29)

S——Pq

Case 3. Roots of the Denominator of F(s) Are Complex or Imaginary An example
of F(s) with complex roots in the denominator is

3

Fls)=———— 2.30
(5) s(s?+2s+5) (230)
This function can be expanded in the following form:
3 K, Kys+K3
_— 2.31
s(s2+25+5) s +s2+2s+5 (231)

K is found in the usual way to be % K> and K3 can be found by first multiplying
Eq. (2.31) by the lowest common denominator, s(s*> + 25+ 5), and clearing the
fractions. After simplification with K; = 2, we obtain

3= (Kz +%>s2 + <K3 +§>s +3 (2.32)

41

Trylt 2.3

Use the following MATLAB
and Control System Toolbox
statement to form the LTI
transfer function of Eq. (2.30).

F=t£(3],[1 2 5 0)
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Trylt 2.4

Use the following MATLAB
and Symbolic Math Toolbox
statements to get Eq. (2.38)

from Eq. (2.30).

syms s
f=ilaplace...

(3/(s*(s"2+2 xs+5)));
pretty(f)

Chapter 2 Modeling in the Frequency Domain

Balancing coefficients, (K; +2) =0 and (K3 +£) =0. Hence K, = —2 and K3 =
— 9% Thus
5 ,

3 3/5 3 542

F _— = - 2.33
(s) = s(2+25+5) s 582+25+5 (233)
The last term can be shown to be the sum of the Laplace transforms of an
exponentially damped sine and cosine. Using Item 7 in Table 2.1 and Items 2 and 4 in

Table 2.2, we get

A
F[Ae “cos wi] = _Alsta) (2.34)
(s +a)* + o?
Similarly,
—at; Bw
g(f[Be Sin a)t] = ()—22 (235)
st+a) +w
Adding Egs. (2.34) and (2.35), we get
A B
F[Ae "cos wt + Be “sinwt] = Als+a) + Bo (2.36)

(s 4+ a)* + ?

We now convert the last term of Eq. (2.33) to the form suggested by Eq. (2.36)
by completing the squares in the denominator and adjusting terms in the numerator

withﬂep(mg iPRpe. Heildn

3/5 36+ +1/2)2)

F(s) = 2.37
() =="53 (s +1)* +2? (2:37)
Comparing Eq. (2.37) to Table 2.1 and Eq. (2.36), we find
3 3, 1.
fl) = 57 5¢ <cos 2t + 5Sin 2[) (2.38)

In order to visualize the solution, an alternate form of f(¢), obtained by
trigonometric identities, is preferable. Using the amplitudes of the cos and sin

terms, we factor out /1> + (1 /2)2 from the term in parentheses and obtain

3 3 Vet 1/2 .
f(t) ==—24/12+ (1/2)%¢" | ———c0s 2t + ————sin2¢ | (2.39)
>3 V12 4 (1/2) 12+ (1/2)

Letting 1/4/1% + (1/2)* = cos ¢ and (1/2)/4/1> + (1/2)* = sin ¢,
f(t) = % - % \/12 + (1/2)%¢ ™" (cos ¢ cos 21 + sin ¢ sin 2t) (2.40)

f(t) = 0.6 — 0.671e 'cos(2t — ¢) (2.41)

or
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where ¢ = arctan 0.5 = 26.57°. Thus, f(¢) is a constant plus an exponentially damped
sinusoid.

In general, then, given an F(s) whose denominator has complex or purely
imaginary roots, a partial-fraction expansion,

_ N(s) N(s)
Fls) = D(s) (s+p))(s>+as+b)---
__ K | (Kas+ Ky (2.42)

(s+p1) (s> +as+Db)

can be made if the order of N(s) is less than the order of D(s) p; is real, and (s*> +
as + b) has complex or purely imaginary roots. The complex or imaginary roots are
expanded with (K,s + K3) terms in the numerator rather than just simply K, as in
the case of real roots. The K;’s in Eq. (2.42) are found through balancing the
coefficients of the equation after clearing fractions. After completing the squares on
(s> + as + b) and adjusting the numerator, (Kss + K3)/(s*> + as + b) can be put into
the form shown on the right-hand side of Eq. (2.36).

Finally, the case of purely imaginary roots arises if a = 0 in Eq. (2.42). The
calculations are the same.

Another method that follows the technique used for the partial-fraction
expansion of F(s) with real roots in the denominator can be used for complex
and imaginary roots. However, the residues of the complex and imaginary roots are
themselves complex conjugates. Then, after taking the inverse Laplace transform,
the resulting terms can be identified as

O 1 it
% = cos 0 (2.43)
and ot
For example, the previous F(s) can also be expanded in partial fractions as
3 3
F(s) = =
O = 7559 T IT eI
Ky K K;
=— 2.45
s Tst1i2 stl-p2 (245)
Finding K>,
3 3
Ky=———" =——(24j1 2.46
2 sGr1-2) p 20( ) (2.46)

Similarly, K3 is found to be the complex conjugate of K,, and K; is found as
previously described. Hence,

35 3 241 2-j1
Fls)==5 20<s+1+j2+s+1—j2 (247)

from which

[(2 + eI 4 (2 — ,'1)e*<1*f2>t]

&2 4 o2 &2 1 o2
—t - = - =
e [4< . )+z( 2]_ )] (2.48)

8lw Sfw

Trylt 2.5

Use the following MATLAB

statements to help you get

Eq. (2.47).

numf =3

denf=[1 2 5 0]

[k,p,kl=residue...
(numf, denf)
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Using Egs. (2.43) and (2.44), we get

f(t) = % - %e" (cos 2t + %sin 2t> = 0.6 — 0.671e ‘cos(2t — ¢) (2.49)

where ¢ = arctan 0.5 = 26.57°.

symbolic Math Students who are performing the MATLAB exercises and want to

m explore the added capability of MATLAB's Symbolic Math Toolbox
should now run ch2spl and ch2sp2 in Appendix F at www.wiley.com/
college/nise. Youwill learnhow to construct symbolicobjects and
then find the inverse Laplace and Laplace transforms of frequency
and time functions, respectively. The examples in Case 2 and Case 3
in this sectionwill be solved using the Symbolic Math Toolbox.

@Y skill-Assessment Exercise 2.1 —

PROBLEM: Find the Laplace transform of f(¢) = te™".

ANSWER: F(s) =1/(s +5)*

The complete solution is at www.wiley.com/college/nise.

@Y skill-Assessment Exercise 2.2 D

PROBLEM: Find the inverse Laplace transform of F(s) = 10/[s(s + 2)(s + 3)*.

. 5 10 40
WileyPLUS ANSWER:  f() = 9 Se~* +te ¥y 5¢ -
L WPCs J
Control Solutions The complete solution is at www.wiley.com/college/nise.

@ 2.3 The Transfer Function

In the previous section we defined the Laplace transform and its inverse. We presented
the idea of the partial-fraction expansion and applied the concepts to the solution of
differential equations. We are now ready to formulate the system representation
shown in Figure 2.1 by establishing a viable definition for a function that algebraically
relates a system’s output to its input. This function will allow separation of the input,
system, and output into three separate and distinct parts, unlike the differential
equation. The function will also allow us to algebraically combine mathematical
representations of subsystems to yield a total system representation.

Let us begin by writing a general nth-order, linear, time-invariant differential

equation,
d"c(t) d"le(r) L, d'r() d"r(t)
an ar anflw-l-"--l-aoC(l)—bm ar +bm71W+~--+bor(f)

(2.50)
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