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We now turn to the phase plot. Table 10.7 is formed to determine the
progression of slopes on the phase diagram. The first-order pole at —2 yields a
phase angle that starts at 0° and ends at —90° via a —45°/decade slope starting a
decade below its break frequency and ending a decade above its break frequency.
The first-order zero yields a phase angle that starts at 0° and ends at +90° via a
+45° /decade slope starting a decade below its break frequency and ending a
decade above its break frequency. The second-order poles yield a phase angle that
starts at 0° and ends at —180° via a —90° /decade slope starting a decade below their
natural frequency (w, = 5) and ending a decade above their natural frequency. The
slopes, shown in Figure 10.19(a), are summed over each frequency range, and the
final Bode phase plot is shown in Figure 10.19(b).

Students who are using MATLAB should now run chl0pl in Appendix B.
You will learn how to use MATLAB to make Bode plots and list the
pointsontheplots.ThisexercisesolvesExamplel0.3usingMATLAB.
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MATLAB

@Y skill-Assessment Exercise 10.2 IS

PROBLEM: Draw the Bode log-magnitude and phase plots for the system shown in
Figure 10.10, where
WileyPLUS

GO = e [ wecs

(S + 1)(S + 7)(8 + 50) Control Solutions
Apago PDF Enhancer

ANSWER: The complete solution is at www.wiley.com/college/nise.

Trylt 10.1

Use MATLAB, the Control
System Toolbox, and the fol-
lowing statements to obtain the
Bode plots for the system of
Skill-Assessment Exercise 10.2

G=zpk ((—20],[-1,—-7, . . .
—-501,1)
bode (G); grid on

After the Bode plots appear,
click on the curve and drag to
read the coordinates.

In this section, we learned how to construct Bode log-magnitude and Bode
phase plots. The Bode plots are separate magnitude and phase frequency response
curves for a system, G(s). In the next section, we develop the Nyquist criterion for
stability, which makes use of the frequency response of a system. The Bode plots can
then be used to determine the stability of a system.

10.3 Introduction to the Nyquist
Criterion

The Nyquist criterion relates the stability of a closed-loop system to the open-loop
frequency response and open-loop pole location. Thus, knowledge of the open-
loop system’s frequency response yields information about the stability of the
closed-loop system. This concept is similar to the root locus, where we began
with information about the open-loop system, its poles and zeros, and developed
transient and stability information about the closed-loop system.


www.wiley.com/college/nise
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FIGURE 10.20 Closed-loop

control system
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Although the Nyquist criterion will yield stability information at first, we will
extend the concept to transient response and steady-state errors. Thus, frequency
response techniques are an alternate approach to the root locus.

Derivation of the Nyquist Criterion

Consider the system of Figure 10.20. The Nyquist criterion can tell us how many closed-
loop poles are in the right half-plane. Before deriving the criterion, let us establish four
important concepts that will be used during the derivation: (1) the relationship between
the poles of 1 + G(s)H(s) and the poles of G(s)H(s); (2) the relationship between the
zeros of 1 + G(s)H (s) and the poles of the closed-loop transfer function, 7(s); (3) the
concept of mapping points; and (4) the concept of mapping contours.

Letting
G(s) = ]1\)% (10.37a)
N
H(s) = =2 (10.37b)
Dy
we find
G(s)H(s) = gzg’:{ (10.38a)
_ Nc;NH_D(;DH-l-NGNH
1+ G(s)H(s) =1+ DDy = Dabn (10.38b)
T(s) G(s) NeDi (10.38¢)

T1+ G(s)H(s) " DoDy +NgNy

Frod@fmag)@), RBECIucEmeh@ 71975218 of 1 + G(s)H(s) are the same as the
poles of G(s)H(s), the open-loop system, and (2) the zeros of 1 + G(s)H(s)are the
same as the poles of T(s), the closed-loop system.

Next, let us define the term mapping. If we take a complex number on the s-plane
and substitute it into a function, F(s), another complex number results. This process is
called mapping. For example, substituting s = 4 + j3 into the function (s*> + 25 + 1)
yields 16 + j30. We say that4 4 j3mapsinto 16 + j30 through the function (s* 4 2s + 1).

Finally, we discuss the concept of mapping contours. Consider the collection of
points, called a contour, shown in Figure 10.21 as contour A. Also, assume that

Fs) =Bz 2ls=2). (10.39)
(s—pi)(s—pa)-..

Contour A can be mapped through F(s) into contour B by substituting each point
of contour A into the function F(s) and plotting the resulting complex numbers.
For example, point Q in Figure 10.21 maps into point Q through the function F(s).

jo 0 Contour A Im

s-plane A F-plane 4

\
Contour B
0
» 0 —» F(s) —» \\j » Re

FIGURE 10.21 Mapping contour A through function F(s) to contour B
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The vector approach to performing the calculation, covered in Section 8.1, can
be used as an alternative. Some examples of contour mapping are shown in Fig-
ure 10.22 for some simple F(s). The mapping of each point is defined by complex
arithmetic, where the resulting complex number, R, is evaluated from the complex
numbers represented by V, as shown in the last column of Figure 10.22. You should
verify that if we assume a clockwise direction for mapping the points on contour A,
then contour B maps in a clockwise direction if F(s) in Figure 10.22 has just zeros or
has just poles that are not encircled by the contour. The contour B maps in a
counterclockwise direction if F(s) has just poles that are encircled by the contour.
Also, you should verify that if the pole or zero of F(s) is enclosed by contour A, the
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FIGURE 10.22 Examples of

contour mapping
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FIGURE 10.23 Vector
representation of mapping

jo

s-plane
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FIGURE 10.24 Contour
enclosing right half-plane to
determine stability
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mapping encircles the origin. In the last case of Figure 10.22, the pole and zero
rotation cancel, and the mapping does not encircle the origin.

Let us now begin the derivation of the Nyquist criterion for stability. We show
that a unique relationship exists between the number of poles of F(s) contained
inside contour A, the number of zeros of F(s) contained inside contour A, and the
number of counterclockwise encirclements of the origin for the mapping of contour
B. We then show how this interrelationship can be used to determine the stability of
closed-loop systems. This method of determining stability is called the Nyquist
criterion.

Let us first assume that F(s) = 1 + G(s)H (s), with the picture of the poles and
zeros of 1+ G(s)H(s) as shown in Figure 10.23 near contour A. Hence,
R = (V1V,)/(V3V4Vs). As each point Q of the contour A is substituted into
1+ G(s)H(s), a mapped point results on contour B. Assuming that F(s) =1+
G(s)H (s) has two zeros and three poles, each parenthetical term of Eq. (10.39) is a
vector in Figure 10.23. As we move around contour A in a clockwise direction, each
VectAOEf&g 0.3p@|rlieﬁt§1ig?®nltele1-will appear to undergo a complete
rotatioh, or ®¥change in angle o °. On the other hand, each vector drawn from the
poles and zeros of 1 + G(s)H (s) that exist outside contour A will appear to oscillate
and return to its previous position, undergoing a net angular change of 0°.

Each pole or zero factor of 1 + G(s)H (s) whose vector undergoes a complete
rotation around contour A must yield a change of 360° in the resultant, R, or a
complete rotation of the mapping of contour B. If we move in a clockwise direction
along contour A, each zero inside contour A yields a rotation in the clockwise
direction, while each pole inside contour A yields a rotation in the counterclockwise
direction since poles are in the denominator of Eq. (10.39).

Thus, N = P — Z, where N equals the number of counterclockwise rotations of
contour B about the origin; P equals the number of poles of 1+ G(s)H(s) inside
contour A, and Z equals the number of zeros of 1 + G(s)H(s) inside contour A.

Since the poles shown in Figure 10.23 are poles of 1 + G(s)H (s), we know from
Eqgs. (10.38) that they are also the poles of G(s)H(s) and are known. But since the zeros
shown in Figure 10.23 are the zeros of 1+ G(s)H(s), we know from Egs. (10.38)
that they are also the poles of the closed-loop system and are not known. Thus, P equals
the number of enclosed open-loop poles, and Z equals the number of enclosed closed-
loop poles. Hence, N = P — Z, or alternately, Z = P — N, tells us that the number of
closed-loop poles inside the contour (which is the same as the zeros inside the contour)
equals the number of open-loop poles of G(s)H(s) inside the contour minus the
number of counterclockwise rotations of the mapping about the origin.

If we extend the contour to include the entire right half-plane, as shown in
Figure 10.24, we can count the number of right-half-plane, closed-loop poles inside
contour A and determine a system’s stability. Since we can count the number of open-
loop poles, P, inside the contour, which are the same as the right-half-plane poles of
G(s)H(s), the only problem remaining is how to obtain the mapping and find N.
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Since all of the poles and zeros of G(s)H(s) are known, what if we map through
G(s)H(s) instead of 1 + G(s)H (s)? The resulting contour is the same as a mapping
through 1 + G(s)H (s), except that it is translated one unit to the left; thus, we count
rotations about —1 instead of rotations about the origin. Hence, the final statement
of the Nyquist stability criterion is as follows:

If a contour, A, that encircles the entire right half-plane is mapped through
G(s)H(s), then the number of closed-loop poles, Z, in the right half-plane equals
the number of open-loop poles, P, that are in the right half-plane minus the number
of counterclockwise revolutions, N, around —1 of the mapping; that is, Z = P — N.
The mapping is called the Nyquist diagram, or Nyquist plot, of G(s)H(s).

We can now see why this method is classified as a frequency response technique.
Around contour A in Figure 10.24, the mapping of the points on the jw-axis through the
function G(s)H(s) is the same as substituting s = jw into G(s)H(s) to form the
frequency response function G (jw)H (jw). We are thus finding the frequency response
of G(s)H(s) over that part of contour A on the positive jw-axis. In other words, part of
the Nyquist diagram is the polar plot of the frequency response of G(s)H(s).

Applying the Nyquist Criterion to Determine Stability

Before describing how to sketch a Nyquist diagram, let us look at some typical
examples that use the Nyquist criterion to determine the stability of a system. These
examples give us a perspective prior to engaging in the details of mapping. Fig-
ure 10.25(a) shows a contour A that does not enclose closed-loop poles, that is, the
zeros of 1+ G(s)H(s). The contour thus maps through G(s)H(s) into a Nyquist
diagram that does not encircle —1. Hence, P =0, N =0,and Z = P — N = 0. Since
Z is the number of closed-loop poles inside contour A, which encircles the right

half-plane, this system has no righ g p DPI] 1/sﬁﬁ)h
On the other hand, Figure 10. cgs E:E?ontour at, v%llne% ?OES not

enclose open-loop poles, does generate two clockwise encirclements of —1. Thus,
P =0, N = -2, and the system is unstable; it has two closed-loop poles in the right
half-plane since Z = P — N = 2. The two closed-loop poles are shown inside contour

J
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s-plane Gle%_\
O A B
—X XA 0 — G(s)H(s) —> _'1 » Re
: S
(@)

jo

Im

- Test radius
s-plane GH-plane est radius

O\ 4 5

—XKAK o — G(s)H(s) —> - > Re
: )
FIGURE 10.25 Mapping

® examples: a. Contour does not
O = zeros of 1 + G(s)H(s) X = poles of 1+ G(s)H(s) enclose closed-loop poles;
= poles of closed-loop system = poles of G(s)H(s) b. contour does enclose closed-
Location not known Location is known loop poles
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A in Figure 10.25(b) as zeros of 1+ G(s)H(s). You should keep in mind that the
existence of these poles is not known a priori.

In this example, notice that clockwise encirclements imply a negative value for V.
The number of encirclements can be determined by drawing a test radius from —1 in
any convenient direction and counting the number of times the Nyquist diagram
crosses the test radius. Counterclockwise crossings are positive, and clockwise cross-
ings are negative. For example, in Figure 10.25(b), contour B crosses the test radius
twice in a clockwise direction. Hence, there are —2 encirclements of the point —1.

Before applying the Nyquist criterion to other examples in order to determine
a system’s stability, we must first gain experience in sketching Nyquist diagrams. The
next section covers the development of this skill.

( 10.4 Sketching the Nyquist Diagram

The contour that encloses the right half-plane can be mapped through the function
G(s)H(s) by substituting points along the contour into G(s)H(s). The points along
the positive extension of the imaginary axis yield the polar frequency response of
G(s)H(s). Approximations can be made to G(s)H(s) for points around the infinite
semicircle by assuming that the vectors originate at the origin. Thus, their length is
infinite, and their angles are easily evaluated.

However, most of the time a simple sketch of the Nyquist diagram is all that is
needed. A sketch can be obtained rapidly by looking at the vectors of G(s)H(s) and
their motion along the contour. In the examples that follow, we stress this rapid
method for sketching the Nyquist diagram. However, the examples also include

analyical ex ressimG H(§) for each section of the contour to aid you in
G BPADN il sk ARG ST

G example 10.4 D

FIGURE 10.26

a. Turbine and generator;
b. block diagram of
speed control system

for Example 10.4

Sketching a Nyquist Diagram

PROBLEM: Speed controls find wide application throughout industry and the
home. Figure 10.26(a) shows one application: output frequency control of electrical

Steam Tj‘\_@j\ Turbine }—@ Generator }—- Sensor

Frequency or speed

measurements
Valve <«— | Controller
actuator
T Desired speed
or frequency
(@)
Amplifier,
valve actuator, and
Desired steam valve Steam __Lurbine Generator Actual
speed + ® E (s) 100 pressure 1 Torque 5 speed
(s + 10) (s+3) (s+1)

(b)
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power from a turbine and generator pair. By regulating the speed, the control
system ensures that the generated frequency remains within tolerance. Deviations
from the desired speed are sensed, and a steam valve is changed to compensate for
the speed error. The system block diagram is shown in Figure 10.26(b). Sketch the
Nyquist diagram for the system of Figure 10.26.

SOLUTION: Conceptually, the Nyquist diagram is plotted by substituting the points
of the contour shown in Figure 10.27(a) into G(s) = 500/[(s + 1)(s + 3)(s + 10)].
This process is equivalent to performing complex arithmetic using the vectors of
G(s) drawn to the points of the contour as shown in Figure 10.27(a) and (b). Each
pole and zero term of G(s) shown in Figure 10.26(b) is a vector in Figure 10.27(a)
and (b). The resultant vector, R, found at any point along the contour is in general
the product of the zero vectors divided by the product of the pole vectors (see
Figure 10.27(c)). Thus, the magnitude of the resultant is the product of the zero
lengths divided by the product of the pole lengths, and the angle of the resultant is
the sum of the zero angles minus the sum of the pole angles.

As we move in a clockwise direction around the contour from point A to
point C in Figure 10.27(a), the resultant angle goes from 0° to —3 x 90° = —270°, or
from A’to C’' in Figure 10.27(c). Since the angles emanate from poles in the
denominator of G(s), the rotation or increase in angle is really a decrease in angle

jo jo
1 ¢ 1
s-plane =plan
ago PDFEn
B
V| ‘/ Vl /

A 3
a3 A I\V3 > O A o
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FIGURE 10.27 Vector
evaluation of the Nyquist
diagram for Example 10.4:
a. vectors on contour at low
frequency;

b. vectors on contour
around infinity;

c. Nyquist diagram
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of the function G(s); the poles gain 270° in a counterclockwise direction, which
explains why the function loses 270°.

While the resultant moves from A to C' in Figure 10.27(c), its magnitude
changes as the product of the zero lengths divided by the product of the pole lengths.
Thus, the resultant goes from a finite value at zero frequency (at point A of Figure
10.27(a), there are three finite pole lengths) to zero magnitude at infinite frequency at
point C (at point C of Figure 10.27(a), there are three infinite pole lengths).

The mapping from point A to point C can also be explained analytically. From
A to C the collection of points along the contour is imaginary. Hence, from A to C,
G(s) = G(jw), or from Figure 10.26(b),

500 B 500
(s+1)(s+3)(s +10) ~ (14?4 30) + j(430w — ?)

Multiplying the numerator and denominator by the complex conjugate of the
denominator, we obtain

G(jw) =5

G(jow) = (10.40)

S—jw

0 (=140 4 30) — j(430w — )

10.41
(—140? + 30)* + (43w — w3)* (1041)

At zero frequency, G(jw) = 500/30 = 50/3. Thus, the Nyquist diagram starts at
50/3 at an angle of 0°. As w increases the real part remains positive, and the
imaginary part remains negative. At w = 1/30/14, the real part becomes negative.
At w = /43, the Nyquist diagram crosses the negative real axis since the imaginary
term goes to zero. The real value at the axis crossing, point Q' in Figure 10.27(c),
found by substituting into Eq. (10.41), is —0.874. Continuing toward o = oo, the
real part is negatlve and the imaginary part is positive. At infinite frequency
cihpag EZRhane er

Around the 1nf1n1te sermclrcle from point C to point D shown in Figure 10.27(b),
the vectors rotate clockwise, each by 180°. Hence, the resultant undergoes a counter-
clockwise rotation of 3 x 180°, starting at point C' and ending at point D’ of
Figure 10.27(c). Analytically, we can see this by assuming that around the infinite
semicircle, the vectors originate approximately at the origin and have infinite length.
For any point on the s-plane, the value of G(s) can be found by representing each
complex number in polar form, as follows:

500

C) = R (R ) (R )

(10.42)

where R_; is the magnitude of the complex number (s + 1), and 6_; is the angle of
the complex number (s + ). Around the infinite semicircle, all R_; are infinite, and
we can use our assumption to approximate the angles as if the vectors originated at
the origin. Thus, around the infinite semicircle,

500
G(s) = =0z — (6_ 6_ 6_ 10.43
(s) (011655010 (6_1+6_3+6_19) ( )

Atpoint CinFigure 10.27(b), the angles are all 90°. Hence, the resultantis 02 — 270°,
shown as point C’ in Figure 10.27(c). Similarly, at point D, G(s) = 0£ + 270° and
maps into point D’. You can select intermediate points to verify the spiral whose
radius vector approaches zero at the origin, as shown in Figure 10.27(c).

The negative imaginary axis can be mapped by realizing that the real part of
G(jw)H (jw) is always an even function, whereas the imaginary part of G(jw)H (jw)
is an odd function. That is, the real part will not change sign when negative values of
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w are used, whereas the imaginary part will change sign. Thus, the mapping of the
negative imaginary axis is a mirror image of the mapping of the positive imaginary
axis. The mapping of the section of the contour from points D to A is drawn as a
mirror image about the real axis of the mapping of points A to C.

567

In the previous example, there were no open-loop poles situated along the
contour enclosing the right half-plane. If such poles exist, then a detour around the
poles on the contour is required; otherwise, the mapping would go to infinity in an
undetermined way, without angular information. Subsequently, a complete sketch of
the Nyquist diagram could not be made, and the number of encirclements of —1
could not be found.

Let us assume a G(s)H(s) = N(s)/sD(s) where D(s) has imaginary roots. The s
term in the denominator and the imaginary roots of D(s) are poles of G(s)H(s) that
lie on the contour, as shown in Figure 10.28(a). To sketch the Nyquist diagram, the
contour must detour around each open-loop pole lying on its path. The detour can be
to the right of the pole, as shown in Figure 10.28(b), which makes it clear that each
pole’s vector rotates through +180° as we move around the contour near that pole.
This knowledge of the angular rotation of the poles on the contour permits us to
complete the Nyquist diagram. Of course, our detour must carry us only an infini-
tesimal distance into the right half-plane, or else some closed-loop, right-half-plane
poles will be excluded in the count.

We can also detour to the left of the open-loop poles. In this case, each pole
rotates through an angle of —180° as we detour around it. Again, the detour must be
infinitesimally small, or else we might include some left-half-plane poles in the

count. Let us look at an.example.Apag 0 PDF En h an C er
jo o

jo
A

s-plane s-plane s-plane

(@) ® (c)

FIGURE 10.28 Detouring
around open-loop poles:
a. poles on contour;

b. detour right;

c. detour left

G example 10.5 D

PROBLEM: Sketch the Nyquist diagram of the unity feedback system of Fig-
ure 10.10, where G(s) = (s +2)/s°.

SOLUTION: The system’s two poles at the origin are on the contour and must be
bypassed, as shown in Figure 10.29(a). The mapping starts at point A and continues
in a clockwise direction. Points A, B, C, D, E, and F of Figure 10.29(a) map
respectively into points A,B,C,D,E, andF of Figure 10.29(b).

At point A, the two open-loop poles at the origin contribute 2 x 90° = 180°,
and the zero contributes 0°. The total angle at point A is thus —180°. Close to the
origin, the function is infinite in magnitude because of the close proximity to the

Nyquist Diagram for Open-Loop Function with Poles on Contour
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Jjo Im
Test radius GH-plane
s-plane
£ Q > Re
) A -1 #9
Two poles

(@) ®
FIGURE 10.29 a. Contour for Example 10.5; b. Nyquist diagram for Example 10.5

two open-loop poles. Thus, point A maps into point A’, located at infinity at an
angle of —180°.

Moving from point A to point B along the contour yields a net change in angle
of +90° from the zero alone. The angles of the poles remain the same. Thus, the
mapping changes by +90° in the counterclockwise direction. The mapped vector
goes from —180° at A'to —90°at B'. At the same time, the magnitude changes
from infinity to zero since at point B there is one infinite length from the zero
divided by two infinite lengths from the poles.

Alternately, the frequency response can be determined analytically from
G(j ) 2+ ja)) /(—?), considering @ going from 0 to co. At low frequencies,
G(jo) =2/(—w ) or 0o £180°. At high frequencies, G(jw) = j/(—w), or 0£ — 90°.

Alsw ryEr:f %gaq egatlve
ravel along the contour e function magnitude stays at zero

(one infinite zero length divided by two infinite pole lengths). As the vectors move
through BCD, the zero’s vector and the two poles’ vectors undergo changes of
—180° each. Thus, the mapped vector undergoes a net change of +180°, which is the
angular change of the zero minus the sum of the angular changes of the poles
{—180 — [2(—180)] = +180}. The mapping is shown as B’ C' D', where the resultant
vector changes by +180° with a magnitude of e that approaches zero.

From the analytical point of view,

R_,26_,

Gls) = (RoZ60)(RoZ6y)

(10.44)
anywhere on the s-plane where R_,/Z6_, is the vector from the zero at —2 to any
point on the s-plane, and Ro£6; is the vector from a pole at the origin to any point
on the s-plane. Around the infinite semicircle, all R_; = oo, and all angles can be
approximated as if the vectors originated at the origin. Thus at point B, G(s) =
0£ —90° since all 6_; = 90° in Eq. (10.44). At point C, all R_; = oo, and all _; = 0°
in Eq. (10.44). Thus, G(s) = 0£0°. At point D, all R_; = oo, and all 6_; = —90° in
Eq. (10.44). Thus, G(s) = 0£90°.

The mapping of the section of the contour from D to E is a mirror image of
the mapping of A to B. The result is D' to E'.

Finally, over the section EFA, the resultant magnitude approaches infinity.
The angle of the zero does not change, but each pole changes by +180°. This
change yields a change in the function of —2 x 180° = —360°. Thus, the mapping
from E'toA’ is shown as infinite in length and rotating —360°. Analytically,
we can use Eq. (10.44) for the points along the contour EFA. At E,
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G(s) = (2£0°)/[(e£ — 90°)(e£ — 90°)] = c0L180°. At F, G(s) = (2£0°)/[(e £0°)
(e £0°)] = 00Z0°. At A, G(s) = (2£0°)/[(e £90°)(e £90°)] = coZ — 180°.

The Nyquist diagram is now complete, and a test radius drawn from —1 in
Figure 10.29(b) shows one counterclockwise revolution, and one clockwise revo-

lution, yielding zero encirclements.

MATLAB
Students who are using MATLAB should now run chl0p2 in Appendix B. m

Youwill learn how touse MATLAB tomake a Nyquist plot and list the
points on the plot. Youwill also learn how to specify a range for
frequency. This exercise solves Example 10.5 using MATLAB.

@Y skill-Assessment Exercise 10.3 IS

PROBLEM: Sketch the Nyquist diagram for the system shown in Figure 10.10 where

1
Gls) = 512)(s+4)

Compare your sketch with the polar plot in Skill-Assessment Exercise 10.1(c).

ANSWER: The complete solution is located at www.wiley.com/college/nise.

In this section, we learned how to sketch a Nyquist diagram. We saw how to
calculate the value of the intersection of the Nyquist diagram with the negative real
axis. This intersection is importan @ﬂﬁn EQF‘J%U adddnts of
—1. Also, we showed how to sketch the Nyquist diagram when open-loop poles exist
on the contour; this case required detours around the poles. In the next section, we
apply the Nyquist criterion to determine the stability of feedback control systems.

( 10.5 Stability via the Nyquist Diagram

We now use the Nyquist diagram to determine a system’s stability, using the simple
equation Z = P — N. The values of P, the number of open-loop poles of G(s)H(s)
enclosed by the contour, and N, the number of encirclements the Nyquist diagram
makes about —1, are used to determine Z, the number of right-half-plane poles of
the closed-loop system.

If the closed-loop system has a variable gain in the loop, one question we would
like to ask is, “For what range of gain is the system stable?” This question, previously
answered by the root locus method and the Routh-Hurwitz criterion, is now answered
via the Nyquist criterion. The general approach is to set the loop gain equal to unity
and draw the Nyquist diagram. Since gain is simply a multiplying factor, the effect of
the gain is to multiply the resultant by a constant anywhere along the Nyquist diagram.

For example, consider Figure 10.30, which summarizes the Nyquist approach
for a system with variable gain, K. As the gain is varied, we can visualize the Nyquist
diagram in Figure 10.30(c) expanding (increased gain) or shrinking (decreased gain)
like a balloon. This motion could move the Nyquist diagram past the —1 point,
changing the stability picture. For this system, since P = 2, the critical point must be
encircled by the Nyquist diagram to yield N = 2 and a stable system. A reduction in
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FIGURE 10.30 Demonstrating
Nyquist stability: a. system;
b. contour; ¢. Nyquist diagram

Trylt 10.2

Use MATLAB, the Control
System Toolbox, and the fol-
lowing statements to plot the
Nyquist diagram of the system
shown in Figure 10.30(a).

G=zpk(—3,—5], ...
[2,4],1)
nyquist(G)

After the Nyquist diagram
appears, click on the curve and
drag to read the coordinates.

Chapter 10 Frequency Response Techniques
R(s) + Es) | Ks+3)(s+5) C(s)
% (s=2)(s—4)
(@)

GH-plane

=11
-1.33
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\
>
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®) (c)

gain would place the critical point outside the Nyquist diagram where N =0,
yielding Z = 2, an unstable system.

From another perspective we can think of the Nyquist diagram as remaining
stationary and the —1 point moving along the real axis. In order to do this, we set the
gain to unity and position the critical point at —1/K rather than —1. Thus, the critical
point appears to mQy se the origin as K increases.

agﬁl:@m di FHCGHE real axis at —1, then G(jw)H (jw) =
—1. From root locus concepts, when G(s)H(s) = —1, the variable s is a closed-loop
pole of the system. Thus, the frequency at which the Nyquist diagram intersects —1 is
the same frequency at which the root locus crosses the jw-axis. Hence, the system is
marginally stable if the Nyquist diagram intersects the real axis at —1.

In summary, then, if the open-loop system contains a variable gain, K, set K =
1 and sketch the Nyquist diagram. Consider the critical point to be at —1/K rather
than at —1. Adjust the value of K to yield stability, based upon the Nyquist criterion.

G example 10.c D

Range of Gain for Stability via The Nyquist Criterion

PROBLEM: For the wunity feedback system of Figure 10.10, where
G(s) = K/[s(s + 3)(s +5)], find the range of gain, K, for stability, instability, and
the value of gain for marginal stability. For marginal stability also find the
frequency of oscillation. Use the Nyquist criterion.

SOLUTION: First set K = 1 and sketch the Nyquist diagram for the system, using
the contour shown in Figure 10.31(a). For all points on the imaginary axis,

K =8 —j(150 — &)
s(s+3)(s+5) [K=L 64wt + 0?(15 — w?)?

s=jw

G(jw)H (jo) = (10.45)

At w =0, G(jo)H(jw) = —0.0356 — joo.
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s-plane GH-plane

X
x

(0]
\ -0 . a):'\/ﬁ W=+
Jw -1 -0.0083

FIGURE 10.31
O==c0 0=0+ a. Contour for Example 10.6;
(a) (b) b. Nyquist diagram

Next find the point where the Nyquist diagram intersects the negative real
axis. Setting the imaginary part of Eq. (10.45) equal to zero, we find o = V/15.
Substituting this value of w back into Eq. (10.45) yields the real part of —0.0083.
Finally, at w = oo, G(jo)H(jw) = G(s)H(s);_ s = 1/(joo)® = 02 — 270°.

From the contour of Figure 10.31(a), P = 0; for stability N must then be
equal to zero. From Figure 10.31(b), the system is stable if the critical point lies
outside the contour (N = 0), so that Z = P — N = 0. Thus, K can be increased by
1/0.0083 = 120.5 before the Nyquist diagram encircles —1. Hence, for stability,
K < 120.5. For marginal stability K = 120.5. At this gain the Nyquist diagram
intersects —1, and the frequency of oscillation is v/15 rad/s.

Anann D Enhancn
\oayuo i I riaarrcc

Now that we have used the Nyquist diagram to determine stability, we can
develop a simplified approach that uses only the mapping of the positive jw-axis.

Stability via Mapping Only the Positive jo-Axis

Once the stability of a system is determined by the Nyquist criterion, continued

evaluation of the system can be simplified by using just the mapping of the positive

jw-axis. This concept plays a major role in the next two sections, where we discuss

stability margin and the implementation of the Nyquist criterion with Bode plots.
Consider the system shown in Figure 10.32, which is stable at low values of gain

and unstable at high values of gain. Since the contour does not encircle open-loop

s-plane GH-plane

Root locus B

Contour

%

= Re
-/ © A
FIGURE 10.32
a. Contour and root locus of
system that is stable for small
gain and unstable for large gain;

(@ (®) b. Nyquist diagram
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jo Im
A

s-plane GH-plane

Root locus B

A . F
S

(a) ®
FIGURE10.33 a. Contour and root locus of system that is unstable for small gain and stable for
large gain; b. Nyquist diagram

Contour

Re

&

poles, the Nyquist criterion tells us that we must have no encirclements of —1 for the
system to be stable. We can see from the Nyquist diagram that the encirclements of
the critical point can be determined from the mapping of the positive jw-axis alone. If
the gain is small, the mapping will pass to the right of —1, and the system will be
stable. If the gain is high, the mapping will pass to the left of —1, and the system will
be unstable. Thus, this system is stable for the range of loop gain, K, that ensures that
the open-loop magnitude is less than unity at that frequency where the phase angle is
180° (or, equivalently, —180°). This statement is thus an alternative to the Nyquist
criterion for this system
'qrp\qgfed Mﬁ O 33, which is unstable at low values
of gairf and stable at hig Values of gain ?e;: the contour encloses two open-loop
poles, two counterclockw1se encirclements of the critical point are required for
stability. Thus, for this case the system is stable if the open-loop magnitude is greater
than unity at that frequency where the phase angle is 180° (or, equivalently, —180°).
In summary, first determine stability from the Nyquist criterion and the
Nyquist diagram. Next interpret the Nyquist criterion and determine whether the
mapping of just the positive imaginary axis should have a gain of less than or greater
than unity at 180°. If the Nyquist diagram crosses +180° at multiple frequencies,
determine the interpretation from the Nyquist criterion.

G example 10.7 D

Stability Design via Mapping Positive jo-Axis

PROBLEM: Find the range of gain for stability and instability, and the gain for
marginal stability, for the unity feedback system shown in Figure 10.10, where
G(s) = K/[(s*> 4+ 25 4+ 2)(s + 2)]. For marginal stability find the radian frequency of
oscillation. Use the Nyquist criterion and the mapping of only the positive
imaginary axis.

SOLUTION: Since the open-loop poles are only in the left-half-plane, the Nyquist
criterion tells us that we want no encirclements of —1 for stability. Hence, a gain
less than unity at £180° is required. Begin by letting K = 1 and draw the portion
of the contour along the positive imaginary axis as shown in Figure 10.34(a). In
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FIGURE 10.34  a. Portion of contour to be mapped for Example 10.7; b. Nyquist diagram of
mapping of positive imaginary axis

Figure 10.34(b), the intersection with the negative real axis is found by letting
s = join G(s)H(s), setting the imaginary part equal to zero to find the frequency,
and then substituting the frequency into the real part of G(jw)H (jw). Thus, for
any point on the positive imaginary axis,
1
(2 +25+2)(s +2) |,
41— @?) — jw(6 — w?)
16(1 — ?)* + @?(6 — w?)*

G(jo)H(jw) =

(10.46)

Setting the imaginary part equal to zero, we find w = /6. Substituting this value
back into Eq. (10.46) yields the ARG O /BDFH/Erhancer

This closed-loop system is stable if the magnitude of the frequency response is
less than unity at 180°. Hence, the system is stable for K < 20, unstable for K > 20,
and marginally stable for K = 20. When the system is marginally stable, the radian
frequency of oscillation is v/6.
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@ skill-Assessment Exercise 10.4 IS

PROBLEM: For the system shown in Figure 10.10, where

K
Gls) = 5+2)(s+4)(s+6)

do the following:
a. Plot the Nyquist diagram.

b. Use your Nyquist diagram to find the range of gain, K, for stability.
ANSWERS:

a. See the answer at www.wiley.com/college/nise.
b. Stable for K < 480

The complete solution is at www.wiley.com/college/nise.

WileyPLUS

Control Solutions
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10.6 Gain Margin and Phase Margin via
the Nyquist Diagram

Now that we know how to sketch and interpret a Nyquist diagram to determine a
closed-loop system’s stability, let us extend our discussion to concepts that will
eventually lead us to the design of transient response characteristics via frequency
response techniques.

Using the Nyquist diagram, we define two quantitative measures of how stable
a system is. These quantities are called gain margin and phase margin. Systems with
greater gain and phase margins can withstand greater changes in system parameters
before becoming unstable. In a sense, gain and phase margins can be qualitatively
related to the root locus, in that systems whose poles are farther from the imaginary
axis have a greater degree of stability.

In the last section, we discussed stability from the point of view of gain at 180°
phase shift. This concept leads to the following definitions of gain margin and phase
margin:

Gain margin, Gy, The gain margin is the change in open-loop gain, expressed in
decibels (dB), required at 180° of phase shift to make the closed-loop system
unstable.

Phase margin, ®),. The phase margin is the change in open-loop phase shift required
at unity gain to make the closed-loop system unstable.

These two definitions are shown graphically on the Nyquist diagram in Figure 10.35.

Lm ]é syﬁmat Eﬁﬁaﬁ&e& Ere no encirclements of —1. Using
Fig - us'f on iti ain margin. Here a gain difference
between the Nyquist diagram’s crossing of the real axis at —1/a and the —1 critical
point determines the proximity of the system to instability. Thus, if the gain of the
system were multiplied by a units, the Nyquist diagram would intersect the critical

point. We then say that the gain margin is a units, or, expressed in dB, Gy, = 20 log a.
Notice that the gain margin is the reciprocal of the real-axis crossing expressed in dB.

Im
A

GH-plane Unit circle

Nyquist
1 diagram
_1. ~a

> Re

T W
—

o

-+

Gain difference Phase difference
before instability before instability

Gain margin = Gy;=20loga  Phase margin=®y, = o

FIGURE 10.35 Nyquist diagram showing gain and phase margins
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In Figure 10.35, we also see the phase margin graphically displayed. At point
Q', where the gain is unity, a represents the system’s proximity to instability. That is,
at unity gain, if a phase shift of o degrees occurs, the system becomes unstable.
Hence, the amount of phase margin is «. Later in the chapter, we show that phase
margin can be related to the damping ratio. Thus, we will be able to relate
frequency response characteristics to transient response characteristics as well
as stability. We will also show that the calculations of gain and phase margins are
more convenient if Bode plots are used rather than a Nyquist diagram, such as that
shown in Figure 10.35.

For now let us look at an example that shows the calculation of the gain and
phase margins.

G example 10.3 TN

Finding Gain and Phase Margins

PROBLEM: Find the gain and phase margin for the system of Example 10.7 if
K=6.

SOLUTION: To find the gain margin, first find the frequency where the Nyquist
diagram crosses the negative real axis. Finding G(jw)H (jw), we have

GlieH (o) = T 726 +2) S

Apago.» PRk - Enhancet™”

T 16(1 — 0?)? + (6 — ?)?

The Nyquist diagram crosses the real axis at a frequency of v/6 rad/s. The real part
is calculated to be —0.3. Thus, the gain can be increased by (1/0.3) = 3.33 before
the real part becomes —1. Hence, the gain margin is

Gy =201l0og3.33 =10.45dB (10.48)

To find the phase margin, find the frequency in Eq. (10.47) for which the
magnitude is unity. As the problem stands, this calculation requires computational
tools, such as a function solver or the program described in Appendix H.2. Later in
the chapter we will simplify the process by using Bode plots. Eq. (10.47) has unity gain
at a frequency of 1.253 rad/s. At this frequency, the phase angle is —112.3°. The
difference between this angle and —180° is 67.7°, which is the phase margin.

MATLAB
Students who areusingMATLAB shouldnow run chl0p3 in Appendix B. m
You will learn how to use MATLAB to find gain margin, phase
margin, zero dB frequency, and 180° frequency. This exercise
solves Example 10.8 using MATLAB.

Gui Tool
MATLAB's LTI Viewer, with the Nyquist diagram selected, is an- m

other method that may be used to find gain margin, phase margin,
zero dB frequency, and 180° frequency. You are encouraged to
study Appendix E, at www.wiley.com/college/nise, which con-
tains a tutorial on the LTI Viewer as well as some examples.
Example E.2 solves Example 10.8 using the LTI Viewer.
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@Y skill-Assessment Exercise 10.5 D

Trylt 10.3

Use MATLAB, the Control
System Toolbox, and the fol-
lowing statements to find the
gain and phase margins of
G(s)H(s) = 100/[(s+2)
(s+4)(s+6)] using the Nyquist
diagram.

G=zpk ([ 1,[ —2,—4,
nyquist(G)

—6],100)

After the Nyquist diagram
appears:

1. Right-click in the graph
area.

2. Select Characteristics.

3. Select All Stability
Margins.

4. Let the mouse rest on the
margin points to read the
gain and phase margins.

WileyPLUS

Control Solutions

PROBLEM: Find the gain margin and the 180° frequency for the
problem in Skill-Assessment Exercise 10.4 if K = 100.

ANSWERS: Gain margin = 13.62 dB; 180° frequency = 6.63 rad/s
The complete solution is at www.wiley.com/college/nise.

10.7 Stabilit
Bode P

In this sectio \ﬁﬁ?n aﬁl margin and phase margin and calculated them
algsflhafp htk @& 8F show how to use Bode diagrams to

1mplement the stability calculations performed in Sections 10.5 and 10.6 using the
Nyquist diagram. We will see that the Bode plots reduce the time and simplify the
calculations required to obtain results.

P{ Gain Margin, and Phase Margin via
ots

In this section, we determine stability, gain and phase margins, and the range of gain
required for stability. All of these topics were covered previously in this chapter, using
Nyquist diagrams as the tool. Now we use Bode plots to determine these character-
istics. Bode plots are subsets of the complete Nyquist diagram but in another form.
They are a viable alternative to Nyquist plots, since they are easily drawn without the
aid of the computational devices or long calculations required for the Nyquist diagram
and root locus. You should remember that all calculations applied to stability were
derived from and based upon the Nyquist stability criterion. The Bode plots are an
alternate way of visualizing and implementing the theoretical concepts.

Determining Stability

Let us look at an example and determine the stability of a system, implementing the
Nyquist stability criterion using Bode plots. We will draw a Bode log-magnitude plot
and then determine the value of gain that ensures that the magnitude is less than
0 dB (unity gain) at that frequency where the phase is £180°.
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G example 10.0 D

Range of Gain for Stability via Bode Plots

PROBLEM: Use Bode plots to determine the range of K within which the unity
feedback system shown in Figure 10.10 is stable. Let G(s) = K/[(s + 2)(s + 4)(s + 5)].

SOLUTION: Since this system has all of its open-loop poles in the left-half-plane,
the open-loop system is stable. Hence, from the discussion of Section 10.5, the
closed-loop system will be stable if the frequency response has a gain less than unity
when the phase is 180°.

Begin by sketching the Bode magnitude and phase diagrams shown in Figure
10.36. In Section 10.2, we summed normalized plots of each factor of G(s) to create
the Bode plot. We saw that at each break frequency, the slope of the resultant Bode
plot changed by an amount equal to the new slope that was added. Table 10.6
demonstrates this observation. In this example, we use this fact to draw the Bode
plots faster by avoiding the sketching of the response of each term.

The low-frequency gain of G(s)H(s) is found by setting s to zero. Thus, the
Bode magnitude plot starts at K/40. For convenience, let K = 40 so that the log-
magnitude plot starts at 0 dB. At each break frequency, 2, 4, and 5, a 20 dB/decade
increase in negative slope is drawn, yielding the log-magnitude plot shown in
Figure 10.36.

The phase diagram begins at 0° until a decade below the first break frequency
of 2 rad/s. At 0.2 rad/s the curve decreases at a rate of —45°/decade, decreasing an
additional 45°/decade at each subsequent frequency (0.4 and 0.5 rad/s) a decade

below each break. At a decade a%@c@l@eakaFmEﬁ Hcaeﬁaéegiduced

by 45°/decade at each frequenc

0
A
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FIGURE 10.36 Bode log-magnitude and phase diagrams for the system of Example 10.9
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The Nyquist criterion for this example tells us that we want zero encir-
clements of —1 for stability. Thus, we recognize that the Bode log-magnitude
plot must be less than unity when the Bode phase plot is 180°. Accordingly,
we see that at a frequency of 7 rad/s, when the phase plot is —180°, the
magnitude plot is —20 dB. Therefore, an increase in gain of +20 dB is possible
before the system becomes unstable. Since the gain plot was scaled for a gain of
40, 420 dB (a gain of 10) represents the required increase in gain above 40.
Hence, the gain for instability is 40 x 10 = 400. The final result is 0 < K < 400
for stability.

This result, obtained by approximating the frequency response by Bode
asymptotes, can be compared to the result obtained from the actual frequency
response, which yields a gain of 378 at a frequency of 6.16 rad/s.

Studentswho areusing MATLAB shouldnow run chl0Op4 in Appendix B.
You will learn how to use MATLAB to find the range of gain for
stability via frequency response methods. This exercise solves
Example 10.9 using MATLAB.

Evaluating Gain and Phase Margins
Next we show how to evaluate the gain and phase margins by using Bode plots
(Figure 10.37). The gain margin is found by using the phase plot to find the
frequency, wg,,, where the phase angle is 180°. At this frequency, we look at
the magnitude plo rmine the gain margin, G,,, which is the gain required
to rm&gﬁgniﬁﬁg;%a nGie rate, in the previous example with
K =40, the gain margin was found to be 20 dB.

The phase margin is found by using the magnitude curve to find the frequency,

wa,,, Where the gain is 0 dB. On the phase curve at that frequency, the phase margin,
¢u, 1s the difference between the phase value and 180°.

M (dB)
Gain
plot
0dB AN > log ®
Gm
Phase
plot
Phase (degrees)

i

180° » log w

Og,, D¢ M

FIGURE 10.37 Gain and phase margins on the Bode diagrams
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G £xample 10.10 D

Gain and Phase Margins from Bode Plots

PROBLEM: If K = 200 in the system of Example 10.9, find the gain margin and the
phase margin.

SOLUTION: The Bode plot in Figure 10.36 is scaled to a gain of 40. If K = 200 (five
times as great), the magnitude plot would be 20 log 5 = 13.98 dB higher.

To find the gain margin, look at the phase plot and find the frequency where the
phase is 180°. At this frequency, determine from the magnitude plot how much the gain
can be increased before reaching 0 dB. In Figure 10.36, the phase angle is 180° at
approximately 7 rad/s. On the magnitude plot, the gain is —20 + 13.98 = —6.02 dB.
Thus, the gain margin is 6.02 dB.

To find the phase margin, we look on the magnitude plot for the frequency
where the gain is 0 dB. At this frequency, we look on the phase plot to find the
difference between the phase and 180°. This difference is the phase margin. Again,
remembering that the magnitude plot of Figure 10.36 is 13.98 dB lower than the
actual plot, the 0 dB crossing (—13.98 dB for the normalized plot shown in Fig-
ure 10.36) occurs at 5.5 rad/s. At this frequency the phase angle is —165°. Thus, the
phase margin is —165° — (—180°) = 15°.

MATLAB's LTI Viewer, with Bode plots selected, is another method
that may be used to find gain margin, phase margin, zero dB
frequency, and 180° frequency. You are encouraged to study
Appendix E at www.wiley.com/college/nise, which contains a tu-

torial on the 17T viever APAYO sPPEakNhaneer .o

solves Example 10.10 using the LTI Viewer.

Gui Tool

@Y skill-Assessment Exercise 10. IS

PROBLEM: For the system shown in Figure 10.10, where

K
G = 5756+ 2005 £50)

do the following:

a. Draw the Bode log-magnitude and phase plots.
b. Find the range of K for stability from your Bode plots.
c. Evaluate gain margin, phase margin, zero dB frequency, and 180° frequency

from your Bode plots for K = 10, 000.
ANSWERS:

a. See the answer at www.wiley.com/college/nise.
b. K < 96,270

c. Gain margin =19.67 dB, phase margin=92.9°, zero dB frequency =7.74 rad/s,
and 180° frequency = 36.7 rad/s

The complete solution is at www.wiley.com/college/nise.

Trylt 10.4

Use MATLAB, the Control
System Toolbox, and the fol-
lowing statements to solve
Skill-Assessment Exercise
10.6(c) using Bode plots.

G=zpk([1,...
[-5,—20,—-50],10000)
bode (G)

gridon

After the Bode plot appears:

1. Right-click in the graph
area.

2. Select Characteristics.

3. Select All Stability
Margins.

4. Let the mouse rest on the
margin points to read the
gain and phase margins.
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We have seen that the open-loop frequency response curves can be used not
only to determine whether a system is stable but to calculate the range of loop gain
that will ensure stability. We have also seen how to calculate the gain margin and the
phase margin from the Bode diagrams.

Is it then possible to parallel the root locus technique and analyze and design
systems for transient response using frequency response methods? We will begin to
explore the answer in the next section.

10.8 Relation Between Closed-Loop Transient and
Closed-Loop Frequency Responses

Damping Ratio and Closed-Loop Frequency Response

In this section, we will show that a relationship exists between a system’s transient

response and its closed-loop frequency response. In particular, consider the second-
order feedback control system of Figure 10.38, which we have been using

RGs) + E(s) o5 Cs)_ since Chapter 4, where we derived relationships between the closed-loop
> s(s +20w,) transient response and the poles of the closed-loop transfer function,
C(s) w?
FIGURE 10.38 Second-order closed-loop m =T(s) = m (10.49)

system

We now derive relationships between the transient response of Eq. (10.49) and
chargcteristics of itjag ncy response. We define these characteristics and relate
the g ﬁ]gurﬁﬂiﬁ\lalﬂ,@eaﬁlg time, peak time, and rise time. In
Section 10.10, we will show how to use the frequency response of the open-loop
transfer function

2

G(s) = o1 22w gfa),,) (10.50)

shown in Figure 10.38, to obtain the same transient response characteristics.
Let us now find the frequency response of Eq. (10.49), define characteristics of
this response, and relate these characteristics to the transient response. Substituting

s = jo into Eq. (10.49), we evaluate the magnitude of the closed-loop frequency
response as

w2

M = |T(jo)| = z (10.51)
\/(a)ﬁ — w2)2 + 4w a?

A representative sketch of the log plot of Eq. (10.51) is shown in Figure 10.39.

We now show that a relationship exists between the peak value of the closed-
loop magnitude response and the damping ratio. Squaring Eq. (10.51), differentiat-
ing with respect to »?, and setting the derivative equal to zero yields the maximum
value of M, M, where

(10.52)
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10
20 log M,

Magnitude (dB)
<'J.

log w, log wBwW
Log-frequency (rad/s)

at a frequency, wp, of

wp = wpr/1 =28 (10.53)

Since ¢ is related to percent overshoot, we can plot M,, vs. percent overshoot. The
result is shown in Figure 10.40.

Equation (10.52) shows that the maximum magnitude on the frequency
response curve is directly related to the damping ratio and, hence, the percent
overshoot. Also notice from Eq. (10.53) that the peak frequency, w,, is not the
natural frequency. However, for low values of damping ratio, we can assume that the
peak occurs at the natural frequency. Finally, noti ﬂ?i_th will not be a peak at
frequencies above zero if ¢ > 0.7 ﬁitir@ ue E}haﬁm& dn the
magnitude response curve should not be confused with overshoot on the step
response, where there is overshoot for 0 < ¢ < 1.

Response Speed and Closed-Loop Frequency Response
Another relationship between the frequency response and time response is between
the speed of the time response (as measured by settling time, peak time, and rise
time) and the bandwidth of the closed-loop frequency response, which is defined
here as the frequency, wgw, at which the magnitude response curve is 3 dB down
from its value at zero frequency (see Figure 10.39).

1 1 1 1 | 1 1

0 10 20 30 40 50 60 70 80
Percent overshoot
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FIGURE 10.39 Representative
log-magnitude plot of
Eq. (10.51)

FIGURE 10.40 Closed-loop
frequency response peak vs.
percent overshoot for a two-
pole system
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The bandwidth of a two-pole system can be found by finding that frequency for

which M = 1/+/2 (that is, —3 dB) in Eq.(10.51). The derivation is left as an exercise
for the student. The result is

wnw = on/ (1 - 282) + /4L — 457 12 (10.54)

To relate wgw to settling time, we substitute w, = 4/T,¢ into Eq. (10.54) and obtain

T

Similarly, since, w, = 7/(T\/1 — ¢?),

Vi —22)+ Vag —ag 12 (10.56)

T
WBW = ————
Ty\/1-2¢

To relate the bandwidth to rise time, 7,, we use Figure 4.16, knowing the desired ¢ and 7.
For example, assume ¢ = 0.4 and 7T, = 0.2 second. Using Figure 4.16, the ordinate
T,w, = 1.463, from which w, = 1.463/0.2 = 7.315rad/s. Using Eq. (10.54), wpw =
10.05 rad/s. Normalized plots of Egs. (10.55) and (10.56) and the relationship between
bandwidth normalized by rise time and damping ratio are shown in Figure 10.41.
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FIGURE 10.41 Normalized bandwidth vs. damping ratio for a. settling time; b. peak time;
c. rise time




10.9 Relation Between Closed- and Open-Loop Frequency Responses 583

@Y skill-Assessment Exercise 10.7 IS

PROBLEM: Find the closed-loop bandwidth required for 20% overshoot and
2-seconds settling time.

ANSWER: wpw = 5.79rad/s

The complete solution is at www.wiley.com/college/nise.

In this section, we related the closed-loop transient response to the closed-loop
frequency response via bandwidth. We continue by relating the closed-loop fre-
quency response to the open-loop frequency response and explaining the impetus.

10.9 Relation Between Closed- and
Open-Loop Frequency Responses

At this point, we do not have an easy way of finding the closed-loop frequency response
from which we could determine M,, and thus the transient response.” As we have seen,
we are equipped to rapidly sketch the open-loop frequency response but not the closed-
loop frequency response. However, if the open-loop response is related to the closed-
loop response, we can combine the ease of sketching the open-loop response with the
transient response information contained in the closed-loop response.

Constant M Circles and Cﬁl%%%?N Ei)r[c)llzs Enhancer

Consider a unity feedback system whose closed-loop transfer function is

G(s)
T(s) =—=—~ 10.57
© =160 (1057)
The frequency response of this closed-loop function is
T =——— 10.58
() = 15 & (1058)

Since G(jw) isacomplexnumber,let G(jw) = P(w) + jO(w)inEq. (10.58), which yields
Plo) +j0(w)

109 = 180 +1) + Q@) 1059
Therefore,
2 2
M = | (jo)| = — @) T Q@) 10.60
U ) 17+ 0w e
Eq. (10.60) can be put into the form
M2 \? - M2
(PTz_l) HO = (10.61)

2 At the end of this subsection, we will see how to use MATLAB to obtain closed-loop frequency
responses.


www.wiley.com/college/nise
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FIGURE 10.42 Constant M circles

which is the equation of a circle of radius M /(M? — 1) centered at [-M?/(M?* — 1), 0].
Thesg circles, show indEguge 10.42 for various values of M, are called constant
Mc aagan thﬁﬁgfﬁﬁh@-m@ gzrgnitude frequency response for unity
feedback systems. Thus, if the polar frequency response of an open-loop function,
G(s), is plotted and superimposed on top of the constant M circles, the closed-loop
magnitude frequency response is determined by each intersection of this polar plot
with the constant M circles.

Before demonstrating the use of the constant M circles with an example, let us

go through a similar development for the closed-loop phase plot, the constant
N circles. From Eq. (10.59), the phase angle, ¢, of the closed-loop response is

1 9Q(0) ~1_Qo)
¢:tan 1m7tan 1P<a))+1
Q(w) _ O(w) (10.62)
. Plw) Plw)+1 '

tional notation,

0

tmpg=N=————
¢ PP+P+(Q°

(10.63)

Equation (10.63) can be put into the form of a circle,

1\? 1\* N +1
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FIGURE 10.43 Constant N circles

which is plotted in Figure 10.43 for various values of N. The circles of this plot are
called constant N circles. Superimposing a unity feedback, open-loop frequency
response over the constant N circles yields the closed-loop phase response of the
system. Let us now look at an example of the use of the constant M and N circles.

G £xample 10.11 D

Closed-Loop Frequency Response from Open-Loop Frequency Response

PROBLEM: Find the closed-loop frequency response of the unity feedback system
shown in Figure 10.10, where G(s) = 50/[s(s + 3)(s + 6)], using the constant M
circles, N circles, and the open-loop polar frequency response curve.

SOLUTION: First evaluate the open-loop frequency function and make a polar
frequency response plot superimposed over the constant M and N circles. The
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FIGURE 10.44 Nyquistdi m for Example 10.11 and constant M and N circles
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open-loop frequency function is

Gjo) >0

T 902 + (18w — )

(10.65)

from which the magnitude, |G (jw)|, and phase, ZG( jw), can be found and plotted.
The polar plot of the open-loop frequency response (Nyquist diagram) is shown
superimposed over the M and N circles in Figure 10.44.
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FIGURE 10.45 Closed-loop
frequency response for 0=25
Example 10.11
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The closed-loop magnitude frequency response can now be obtained by
finding the intersection of each point of the Nyquist plot with the M circles, while
the closed-loop phase response can be obtained by finding the intersection of each
point of the Nyquist plot with the N circles. The result is shown in Figure 10.45.°

Studentswho areusing MATLAB shouldnow run chl0pb5 in Appendix B.
Youwill learnhowtouseMATLAB to find the closed-1loop frequency
response. This exercise solves Example 10.11 using MATLAB.
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Nichols Charts

A disadvantage of using the M and N circles is that changes of gain in the open-loop
transfer function, G(s), cannot be handled easily. For example, in the Bode plot, a
gain change is handled by moving the Bode magnitude curve up or down an amount
equal to the gain change in dB. Since the M and N circles are not dB plots, changes in
gain require each point of G(jw) to be multiplied in length by the increase or
decrease in gain.

Another presentation of the M and N circles, called a Nichols chart, displays
the constant M circles in dB, so that changes in gain are as simple to handle as in the
Bode plot. A Nichols chart is shown in Figure 10.46. The chart is a plot of open-loop
magnitude in dB vs. open-loop phase angle in degrees. Every point on the M circles
can be transferred to the Nichols chart. Each point on the constant M circles is
represented by magnitude and angle (polar coordinates). Converting the magnitude
to dB, we can transfer the point to the Nichols chart, using the polar coordinates with

magnitude in dB plotted as the ordipate, and the %ﬁlgl% ed as the abscissa.
Similarly, the N circles also can bAp-&ng t ich ahcer
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FIGURE 10.46 Nichols chart

3You are cautioned not to use the closed-loop polar plot for the Nyquist criterion. The closed-loop
frequency response, however, can be used to determine the closed-loop transient response, as discussed in
Section 10.8.



