
 

ndLecture 8: Time response – 2 order systems

� in  previous  lectures  we  have  seen  a  number  of  examples  of  second-order
systems: RLC electrical  circuits,  the  spring-mass-damper  mechanical  oscillator, 
etc.  As  we  have  seen,  the  transfer  function  for  a  simple  second-order  system
may be written in the standard form
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� where � �U s  and � �Y s  are the Laplace transforms of the input and output,
respectively, �  is the damping ratio and n�  is the undamped natural frequency.

8.1 Impulse response
� the zero-state response to a unit impulse reveals the natural characteristics of

the system. That is, given a system at equilibrium � � � �0 0 0y y� ��  at time 0t �

� ,
an impulsive input ‘jars’ the system to an initial velocity over an infinitesimal time.
The subsequent motion from time 0t �

�  is unforced.

� exercise: show that the zero-input response to an initial ‘velocity’ � � 20 ny ���  is
equivalent to the zero-state impulse response with � � � �0 0 0y y� �� . This should
help you appreciate the nature of impulse forcing.

� with � � � �u t t�� , it follows that � � 1U s �  and the response function � �Y s  is
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� which expands to
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� the ‘characteristic polynomial’ � �A s  of the transfer function � �G s  is

� � 2 22 n nA s s �� �� � � (8.4)

� and the roots of the ‘characteristic equation’ � � 0A s �  are
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� inverse Laplace transforming equation (8.3), the natural (ie. unforced) motion of
the system is of the form
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� note, therefore, that we need not always decompose the transfer function (8.2)
into first order terms as in (8.3). Instead, we can gain information about the ‘form’
of the response simply by finding the roots of the characteristic equation
� � 0A s � . The time response will then have the form
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� which has the same form as equation (8.6), except we have not specified the
values of the constants 1 2,c c

� in most cases, our interest is mainly in the form of the response (eg. is the
system stable, unstable, oscillatory, etc). As equation (8.7) shows, this will
depend only on whether the roots 1 2,s s  are real or complex, and is independent
of the constants 1 2,c c . We call these roots the ‘poles’ of the transfer function (8.2)

8.2 Overdamped systems (�>1)
� if the damping ratio is larger than unity, the poles of the transfer function are real.

Assuming for now that the poles are negative, they give rise to a decaying time
response, and are therefore referred to as ‘stable’ poles:
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� the impulse response function is then
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� taking the inverse Laplace transform gives the impulse response:
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� example: the impulse response of an overdamped system with 2n� �  and
3/ 2 2� �  has a characteristic polynomial
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� and the transfer function is
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� from equation (8.9), we have in this case that 1 21, 1/ 2T T� � , and
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� the location of the poles in the s-plane and the impulse response look like

8.3 Critically-damped systems (�=1)
� if the damping ratio is unity, the system poles are real and equal:

1 2 1/ns s T�� � � � � (8.14)

� the impulse response function is then

� � � �
� �

� �

2

2

22

1 1
1/

n

n

Y s G s
s

T s T

�

�

� �

�

�

�

(8.15)

� the inverse Laplace transform gives
� � � � 2 /

/
2

1

t T
n

t T

y t g t te

te
T

�
�

�

� �

�

(8.16)

� the damping in this case is only "critical" in the sense that it defines the boundary
between aperiodic and periodic natural motions.

� example: the impulse response of a critically damped system with 2n� � . From
equation (8.15), the impulse response function is
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� with the time response from(8.16):
� � � � 24 ty t g t te�
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� the location of the poles in the s-plane and the impulse response look like

8.4 Underdamped systems (�<1)
� if the damping ratio is less than unity, the system poles form a complex conjugate

pair:
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� 21d n� � �� �  is the ‘damped natural frequency’.

� the impulse response function is then
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� and impulse response from the inverse Laplace transform:
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� example: the impulse response of an underdamped system with 2, 1/ 2n� �� � .
Using (8.20), the impulse response function is
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� with the time response from (8.21):
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� the location of the poles in the s-plane and the impulse response look like

� the time response in equation (8.23) can be seen to be the product of
exponentially decaying and sinusoidal terms.

� the time constant for the exponential decay can be defined as the time for a
reduction in amplitude by a factor of 1/ 36.8%e � is:
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� the number of cycles of the damped oscillation required for the amplitude to
decay by this factor depends on the damping ratio alone:
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8.5 The s-plane and the time response
� the examples of impulse responses given above indicated the location of the

system poles in the s-plane. Establishing a mental correlation between the
character of the natural motions and the s-plane pole locations is a useful aid to
understanding the general response characteristics of a system without actually
solving the equations, especially for higher-order systems (an nth-order system



will have n poles).  The following figure illustrates this correlation:

� note the following general features for poles with the form
s i� �� � (8.27)

1. if 0� �  the system is ‘unstable’ since the time response grows exponentially
2. if 0� �  the system is ‘stable’ since the time response decays exponentially
3. as � ��  the time response becomes faster because of the term te� . Poles that

are far from the imaginary axis are therefore often called ‘fast’, whilst those that
are closer to the imaginary axis are called ‘slow’.

4. as � ��  the frequency of oscillation becomes faster.

� it is clear that we can determine a great deal about the form of the natural
motions by considering the locations of poles in the s-plane!
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