Lecture 7: Time response — 1% order systems

having developed a linear system model, we are now concerned with calculating
the response of a system to initial conditions and to external inputs. We will begin
by considering first-order systems. A first-order system with input u(t) and output
y(t) may be represented by

1. a differential equation
Ty(t)+y(t)=Ku(t) (7.1)

2. the input u(t) and the unit impulse response
g(t) :ge‘t”, t>0 (7.2)

3. the Laplace-transformed input U(s) and a transfer function

O

(7.3)

correspondingly, there are a number of ways of finding the response to some
general input signal.

4.1 Classical solution

the classical method for solving equation (7.1) is to say that the general solution
is the sum of a particular solution (or forced motion) ys and the complementary
solution (or natural motion yn:

y(t)=y; (t)+a(t) (7.4)

where the forced motion satisfies (7.1) and the natural motion is a solution of the
homogeneous equation:

Y, (1) + ¥, (t)=0 (7.5)

the forced motion yr is usually of the same form as the input: e.g. a sinusoidal
input results in a sinusoidal forced response; a step input results in a constant
forced response; a ramp input produces a linearly increasing forced response.

consider the response to a typical test input: the Heaviside unit step ]HI(t) where

1 fort>0
u(t)=H()= {O for t<0 (7.6)
equation (7.1) then becomes
Ty, (t)+y, (t) = KH(t) (7.7)

the forced response is assumed to be of the same form as the input:
y, =Y = constant (7.8)



substituting equation (7.8) into equation (7.7), we see that the differential
equation is satisfied if Y = K, so that the forced response is
y; =K (7.9)

the homogeneous equation is:
Ty, (t)+y,(t)=0 (7.10)

we note that the function e* has the property that its derivatives are constant
multiples of the function itself, so a solution of this form has a chance of
satisfying equation (7.10). We thus assume that the natural motion is of the form

y. = Ce* (7.11)

where C and s are (often complex) constants.

substituting equation (7.11) into equation (7.10) gives
TsCe® +Ce® =Ce* (Ts+1)=0 (7.12)

apart from the trivial case C = 0 (for which there is no motion), equation (7.12)
can be satisfied only if
Ts+1=0 (7.13)

equation (7.13) is known as the characteristic equation of the system, because
its root s = -1/T is the only value of s for which the assumed motion (7.11) can
occur without external excitation. Thus the most general solution of the
homogeneous equation (7.8) is the natural motion

y, =Ce"'" (7.14)

and, from equation (7.4), the general solution of equation (7.7) fort >0 is
y(t)=K+Ce"'" (7.15)

to determine C we need to introduce information about the initial condition(s). If
we specify that y(0) =y, then equation (7.15) gives

C=y,-K (7.16)
and the complete solution is
y(t)= K +(y,-K)e"" (7.17)
rfgpcgﬁse natural

motion

where we note that the forced response is the response to conditions imposed on
the system from outside, whereas the natural motion is a characteristic of the
system itself

equation (7.17) may also be written as



y(t)=ye"T+K (1— e‘“T) (7.18)
zero—input R

zero-state
response response

e ie. as the sum of the zero-input (no forced input) and the zero-state (zero initial
conditions) responses. It is common to refer to the zero-state response to a unit
step input as the unit step response:
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4.2 Convolution solution

e an arbitrary continuous input u(t) can be approximated by a staircase function,

or a linear combination of shifted pulses, each of duration z. The response of a
linear system will be the sum of its responses to the individual pulses:
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if the width of the pulse occurring at time t =7 is very small compared to the time
constants of the system, the pulse has the same effect as an impulse of strength
u(t)Ar. The contribution to the system response from only this impulse is

Ay(t,r)=u(r)Arg'(t—r) (7.19)

where g'(t—-7)=5(t-7)g(t—7) is the unit impulse response of the system and
§(t—7) is the impulse (or ‘Dirac delta’) function

5(t-r)={°°'tzf

O, t=7

y (7.20)
& [5(t-r)dt=1



e Dby superposition, the total zero-state response is then

y(t)=D u(r)Arg'(t-7) (7.21)

e as Ar— 0, and assuming the input is zero for t<0, we obtain the convolution
inteqgral:

y(t)= ]u(r)g'(t—r)drz ]u(t—r)g'(t)dr (7.22)

e the convolution integral is often written as
y(t)=u(t)*g(t) (7.23)

e the alternative form of the integral on the right side of equation (7.22) can be
found by a substitution of variables eg. g=t—r. Also, in the case that

g'(t-7)=06(t-7)g(t-7)=0 for r>t, the upper limit z=t on the integrals in
(7.22) can be replaced by 7 =.

e note that g'(t—r) can be determined experimentally by applying an pulse input

which is very short compared with the time constants of the physical system (e.g.
a “hammer blow”). Hence, without knowing the internal structure of the system,

we can calculate its response to an arbitrary input u(t) using the convolution
integral (7.22).

e for our example of the unit step response of a first order system, u(t)=H(t) and

g'(t) is given by equation (7.2). Consider the variation with 7z of the terms within
the right-hand form of the convolution integral (7.22):

As(T) = 4(T) f-

e We see that, fort> 0,



T for O t
u(t—r)g(r)z{Ke IT, for O<7 < (7.24)

0 . otherwise

e hence

=[-Kke™" ]to (7.25)

e as obtained for the zero-state response previously in equation (7.18).

4.3 Laplace transform solution

e Laplace transforming equation (7.1), taking account of the initial condition
y(o):yo

TsY (s)-Ty(0)+Y(s)=KU(s) (7.26)
e thus,
Y(S)=%+%”U N (7.27)
:TTS—ffG(s)u (s)

e Wwhere, as defined in an earlier lecture, G(s) is the transfer function between
U (s) and G(s)

e for a unit step input u(t)=H(t) and U (s)=1/s. Hence equation (7.27) becomes

Y(s)= D , K
Ts+1 s(Ts+1) (7.28)
Y .k (}_ 1 j
s+1/T s s+1T
e inverse Laplace transforming equastion (7.28) using tables, we get
y(t)=y,e" +K(1-€e"T) (7.29)

e Which is the same as that obtained previously in (7.18).

e note that the initial conditions are automatically accounted for and the zero-input
solution comes from inverse-transforming the first term on the RHS of (7.28).

e if the initial conditions are zero, we can get the zero-state solution directly from
the transfer function. For the present example, if we have our system model



expressed in the form of the transfer function G(s) = Y(s)/U(s), the response
function Y(s) can be obtained as

Y(s)=G(s)U(s) (7.30)

which for U (s)=1/s is
K 1

Y(s):mg (7.31)

inverse-transforming equation(7.31), as in the right most terms of equations
(7.28) and (7.29), yields the zero-state response y(t):K(l—e‘“T), as in

equation (7.18).

if the input is a unit impulse u(t)=4(t), for which U (s)=1, the response is by
definition the unit impulse response y(t): g(t), which has a Laplace transform
Y(s)=L[g(t)]. From (7.30) we see that Y(s)=G(s). Hence, the transfer
function is the Laplace transform of the unit impulse response.
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