
 

stLecture 7: Time response – 1 order systems

� having developed a linear system model, we are now concerned with calculating
the response of a system to initial conditions and to external inputs. We will begin 
by considering first-order systems. A first-order system with input u(t) and output 
y(t) may be represented by

1. a differential equation
� � � � � �Ty t y t Ku t� �� (7.1)

2. the input u(t) and the unit impulse response
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3. the Laplace-transformed input U(s) and a transfer function
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� correspondingly, there are a number of ways of finding the response to some
general input signal.

4.1 Classical solution
� the classical method for solving equation (7.1) is to say that the general solution

is the sum of a particular solution (or forced motion) yf and the complementary
solution (or natural motion yn:

� � � � � �f ny t y t y t� � (7.4)

� where the forced motion satisfies (7.1)  and the natural motion is a solution of the
homogeneous equation:

� � � � 0n nTy t y t� �� (7.5)

� the forced motion yf is usually of the same form as the input: e.g. a sinusoidal
input results in a sinusoidal forced response; a step input results in a constant
forced response; a ramp input produces a linearly increasing forced response.

� consider the response to a typical test input: the Heaviside unit step � �t� , where
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� equation (7.1) then becomes
� � � � � �f fTy t y t K t� �� � (7.7)

� the forced response is assumed to be of the same form as the input: 
constantfy Y� � (7.8)



� substituting equation (7.8) into equation (7.7), we see that the differential
equation is satisfied if Y = K, so that the forced response is

fy K� (7.9)

� the homogeneous equation is:
� � � � 0n nTy t y t� �� (7.10)

� we note that the function ste  has the property that its derivatives are constant
multiples of the function itself, so a solution of this form has a chance of
satisfying equation (7.10). We thus assume that the natural motion is of the form

st
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� where C and s are (often complex) constants.

� substituting equation (7.11) into equation (7.10) gives
� �1 0st st stTsCe Ce Ce Ts� � � � (7.12)

� apart from the trivial case C = 0 (for which there is no motion), equation (7.12)
can be satisfied only if

1 0Ts � � (7.13)

� equation (7.13) is known as the characteristic equation of the system, because
its root s = -1/T is the only value of s for which the assumed motion (7.11) can
occur without external excitation. Thus the most general solution of the
homogeneous equation (7.8) is the natural motion
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� and, from equation (7.4), the general solution of equation (7.7) for t > 0 is
� � /t Ty t K Ce�

� � (7.15)

� to determine C we need to introduce information about the initial condition(s). If
we specify that � � 00y y�  then equation (7.15) gives

0C y K� � (7.16)

� and the complete solution is
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� where we note that the forced response is the response to conditions imposed on
the system from outside, whereas the natural motion is a characteristic of the
system itself

� equation (7.17) may also be written as
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� ie. as the sum of the zero-input (no forced input) and the zero-state (zero initial
conditions) responses. It is common to refer to the zero-state response to a unit
step input as the unit step response:
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4.2 Convolution solution
� an arbitrary continuous input � �u t  can be approximated by a staircase function,

or a linear combination of shifted pulses, each of duration � . The response of a
linear system will be the sum of its responses to the individual pulses:

� if the width of the pulse occurring at time t ��  is very small compared to the time
constants of the system, the pulse has the same effect as an impulse of strength
� �u t �� . The contribution to the system response from only this impulse is 

� � � � � �, 'y t u g t� � � �� � � � (7.19)

� where � � � � � �'g t t g t� � � �� � � �  is the unit impulse response of the system and

� �t� ��  is the impulse (or ‘Dirac delta’) function
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� by superposition, the total zero-state response is then
� � � � � �'y t u g t� � �� ��� (7.21)

� as 0�� � , and assuming the input is zero for t<0, we obtain the convolution
integral:
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� the convolution integral is often written as
� � � � � �*y t u t g t� (7.23)

� the alternative form of the integral on the right side of equation (7.22) can be
found by a substitution of variables eg. t� �� � . Also, in the case that

� � � � � �' 0g t t g t� � � �� � � � �  for t� � , the upper limit t� �  on the integrals in
(7.22) can be replaced by � � � .

� note that � �'g t ��  can be determined experimentally by applying an pulse input
which is very short compared with the time constants of the physical system (e.g.
a “hammer blow”). Hence, without knowing the internal structure of the system,
we can calculate its response to an arbitrary input � �u t  using the convolution
integral (7.22).

� for our example of the unit step response of a  first order system, � � � �u t t��  and

� �'g t  is given by equation (7.2). Consider the variation with �  of the terms within
the right-hand form of the convolution integral (7.22):

� we see that, for t > 0,



� � � �
/ 0/ ,

0 ,

t T for tKe T
u t g

otherwise
�

� �

� � ��
� � �

�
(7.24)

� hence
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� as obtained for the zero-state response previously in equation (7.18).

4.3 Laplace transform solution
� Laplace transforming equation (7.1), taking account of the initial condition

� � 00y y�
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� thus, 
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� where, as defined in an earlier lecture, � �G s  is the transfer function between

� �U s  and � �G s

� for a unit step input � � � �u t t��  and � � 1/U s s� . Hence equation (7.27) becomes
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� inverse Laplace transforming equastion (7.28) using tables, we get
� � � �/ /
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� which is the same as that obtained previously in (7.18).

� note that the initial conditions are automatically accounted for and the zero-input
solution comes from inverse-transforming the first term on the RHS of (7.28).  

� if the initial conditions are zero, we can get the zero-state solution directly from
the transfer function. For the present example, if we have our system model



expressed in the form of the transfer function G(s) = Y(s)/U(s), the response
function Y(s) can be obtained as

� � � � � �Y s G s U s� (7.30)

� which for � � 1/U s s�  is
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� inverse-transforming equation(7.31), as in the right most terms of equations
(7.28) and (7.29), yields the zero-state response � � � �/1 t Ty t K e�

� � , as in
equation (7.18).

� if the input is a unit impulse � � � �u t t�� , for which � � 1U s � , the response is by
definition the unit impulse response � � � �y t g t� , which has a Laplace transform

� � � �Y s g t� � �� �� . From (7.30) we see that � � � �Y s G s� . Hence, the transfer
function is the Laplace transform of the unit impulse response.


	Classical solution
	Convolution solution
	Laplace transform solution



