Lecture 7: Time response – 1st order systems

- having developed a linear system model, we are now concerned with calculating the response of a system to initial conditions and to external inputs. We will begin by considering first-order systems. A first-order system with input $u(t)$ and output $y(t)$ may be represented by

1. a differential equation
 \[T\ddot{y}(t) + y(t) = Ku(t) \] (7.1)

2. the input $u(t)$ and the unit impulse response
 \[g(t) = \frac{K}{T} e^{-ut/T}, \quad t \geq 0 \] (7.2)

3. the Laplace-transformed input $U(s)$ and a transfer function
 \[G(s) = \mathcal{L}\left[g(t) \right] = \frac{Y(s)}{U(s)} = \frac{K}{Ts + 1} \] (7.3)

- correspondingly, there are a number of ways of finding the response to some general input signal.

4.1 Classical solution
- the classical method for solving equation (7.1) is to say that the general solution is the sum of a particular solution (or forced motion) y_f and the complementary solution (or natural motion) y_n:
 \[y(t) = y_f(t) + y_n(t) \] (7.4)

- where the forced motion satisfies (7.1) and the natural motion is a solution of the homogeneous equation:
 \[Ty_n(t) + y_n(t) = 0 \] (7.5)

- the forced motion y_f is usually of the same form as the input: e.g. a sinusoidal input results in a sinusoidal forced response; a step input results in a constant forced response; a ramp input produces a linearly increasing forced response.

- consider the response to a typical test input: the Heaviside unit step $\mathbb{H}(t)$, where
 \[u(t) = \mathbb{H}(t) = \begin{cases} 1, & \text{for } t > 0 \\ 0, & \text{for } t < 0 \end{cases} \] (7.6)

- equation (7.1) then becomes
 \[T\ddot{y}_f(t) + y_f(t) = K\mathbb{H}(t) \] (7.7)

- the forced response is assumed to be of the same form as the input:
 \[y_f = Y = \text{constant} \] (7.8)
substituting equation (7.8) into equation (7.7), we see that the differential equation is satisfied if \(Y = K \), so that the forced response is
\[
y_f = K
\] (7.9)

the homogeneous equation is:
\[
T\ddot{y}_n(t) + y_n(t) = 0
\] (7.10)

we note that the function \(e^{st} \) has the property that its derivatives are constant multiples of the function itself, so a solution of this form has a chance of satisfying equation (7.10). We thus assume that the natural motion is of the form
\[
y_n = Ce^{st}
\] (7.11)

where \(C \) and \(s \) are (often complex) constants.

substituting equation (7.11) into equation (7.10) gives
\[
TsCe^{st} + Ce^{st} = Ce^{st}(Ts + 1) = 0
\] (7.12)

apart from the trivial case \(C = 0 \) (for which there is no motion), equation (7.12) can be satisfied only if
\[
Ts + 1 = 0
\] (7.13)

equation (7.13) is known as the characteristic equation of the system, because its root \(s = -1/T \) is the only value of \(s \) for which the assumed motion (7.11) can occur without external excitation. Thus the most general solution of the homogeneous equation (7.8) is the natural motion
\[
y_n = Ce^{-st}
\] (7.14)

and, from equation (7.4), the general solution of equation (7.7) for \(t > 0 \) is
\[
y(t) = K + Ce^{-st}
\] (7.15)

to determine \(C \) we need to introduce information about the initial condition(s). If we specify that \(y(0) = y_0 \) then equation (7.15) gives
\[
C = y_0 - K
\] (7.16)

and the complete solution is
\[
y(t) = \frac{K}{\text{forced response}} + \left(y_0 - K\right)e^{-st}
\] (7.17)

where we note that the forced response is the response to conditions imposed on the system from outside, whereas the natural motion is a characteristic of the system itself

equation (7.17) may also be written as
\[y(t) = y_0 e^{-t/T} + K \left(1 - e^{-t/T} \right) \]
(7.18)

- ie. as the sum of the zero-input (no forced input) and the zero-state (zero initial conditions) responses. It is common to refer to the zero-state response to a unit step input as the unit step response:

\[\frac{y(t)}{K} = 1 - e^{-t/T} \]

4.2 Convolution solution

- an arbitrary continuous input \(u(t) \) can be approximated by a staircase function, or a linear combination of shifted pulses, each of duration \(\tau \). The response of a linear system will be the sum of its responses to the individual pulses:

\[\text{if the width of the pulse occurring at time } t = \tau \text{ is very small compared to the time constants of the system, the pulse has the same effect as an impulse of strength } u(t) \Delta \tau. \text{ The contribution to the system response from only this impulse is} \]

\[\Delta y(t, \tau) = u(\tau) \Delta \tau g'(t - \tau) \]
(7.19)

- where \(g'(t - \tau) = \delta(t - \tau) g(t - \tau) \) is the unit impulse response of the system and \(\delta(t - \tau) \) is the impulse (or ‘Dirac delta’) function

\[
\delta(t - \tau) = \begin{cases}
\infty, & t = \tau \\
0, & t \neq \tau
\end{cases}
\]
(7.20)

\[\int_{-\infty}^{\infty} \delta(t - \tau) dt = 1 \]
by superposition, the total zero-state response is then

$$y(t) = \sum u(\tau) \Delta \tau g'(t-\tau)$$ \hspace{1cm} (7.21)

as $\Delta \tau \rightarrow 0$, and assuming the input is zero for $t<0$, we obtain the convolution integral:

$$y(t) = \int_0^t u(\tau) g'(t-\tau) d\tau = \int_0^t u(t-\tau) g'(t) d\tau$$ \hspace{1cm} (7.22)

the convolution integral is often written as

$$y(t) = u(t) * g(t)$$ \hspace{1cm} (7.23)

the alternative form of the integral on the right side of equation (7.22) can be found by a substitution of variables eg. $\beta = t-\tau$. Also, in the case that $g'(t-\tau) = \delta(t-\tau) g(t-\tau) = 0$ for $\tau > t$, the upper limit $\tau = t$ on the integrals in (7.22) can be replaced by $\tau = \infty$.

note that $g'(t-\tau)$ can be determined experimentally by applying an pulse input which is very short compared with the time constants of the physical system (e.g. a “hammer blow”). Hence, without knowing the internal structure of the system, we can calculate its response to an arbitrary input $u(t)$ using the convolution integral (7.22).

for our example of the unit step response of a first order system, $u(t) = H(t)$ and $g'(t)$ is given by equation (7.2). Consider the variation with τ of the terms within the right-hand form of the convolution integral (7.22):

we see that, for $t > 0$,
\[u(t-\tau)g(\tau) = \begin{cases} Ke^{-\tau/T}/T, & \text{for } 0 < \tau < t \\ 0, & \text{otherwise} \end{cases} \] (7.24)

- hence

\[y(t) = \int_0^T \frac{K}{T} e^{-\tau/T} d\tau \]
\[= \left[-Ke^{-\tau/T} \right]_0^T \]
\[= K(1-e^{-T/T}) \] (7.25)

- as obtained for the zero-state response previously in equation (7.18).

4.3 Laplace transform solution

- Laplace transforming equation (7.1), taking account of the initial condition \(y(0) = y_0 \)

\[TsY(s) - Ty(0) + Y(s) = KU(s) \] (7.26)

- thus,

\[Y(s) = \frac{TY_0}{Ts + 1} + \frac{K}{Ts + 1}U(s) \]
\[= \frac{TY_0}{Ts + 1} + G(s)U(s) \] (7.27)

- where, as defined in an earlier lecture, \(G(s) \) is the transfer function between \(U(s) \) and \(G(s) \)

- for a unit step input \(u(t) = \mathcal{H}(t) \) and \(U(s) = 1/s \). Hence equation (7.27) becomes

\[Y(s) = \frac{TY_0}{Ts + 1} + \frac{K}{Ts + 1} \]
\[= \frac{Y_0}{s + 1/T} + K \left(\frac{1}{s} - \frac{1}{s + 1/T} \right) \] (7.28)

- inverse Laplace transforming equation (7.28) using tables, we get

\[y(t) = y_0 e^{-t/T} + K(1 - e^{-t/T}) \] (7.29)

- which is the same as that obtained previously in (7.18).

- note that the initial conditions are automatically accounted for and the zero-input solution comes from inverse-transforming the first term on the RHS of (7.28).

- if the initial conditions are zero, we can get the zero-state solution directly from the transfer function. For the present example, if we have our system model
expressed in the form of the transfer function $G(s) = Y(s)/U(s)$, the response function $Y(s)$ can be obtained as

$$Y(s) = G(s)U(s)$$ \hfill (7.30)

- which for $U(s) = 1/s$ is

$$Y(s) = \frac{K}{(Ts + 1)} \frac{1}{s}$$ \hfill (7.31)

- inverse-transforming equation (7.31), as in the right most terms of equations (7.28) and (7.29), yields the zero-state response $y(t) = K(1 - e^{-t/T})$, as in equation (7.18).

- if the input is a unit impulse $u(t) = \delta(t)$, for which $U(s) = 1$, the response is by definition the unit impulse response $y(t) = g(t)$, which has a Laplace transform $Y(s) = \mathcal{L}[g(t)]$. From (7.30) we see that $Y(s) = G(s)$. Hence, the transfer function is the Laplace transform of the unit impulse response.