
 

 

 

� constitutive equation:
a(D)e(t) = b(D)i(t)

� where a(D), b(D) are differential
operators; D�d/dt

Lecture 5: Modelling – electrical systems

5.1 Relationship with other subjects
� control  theory  is  applied  to  improve  the  performance  of  engineering  systems

involving  many  diverse  physical  elements,  including  mechanical,  electrical, 
thermal and fluid systems. Knowledge about the technologies employed in these 
elements,  and  the  basic  theory  for  modelling  them,  comes  from  your  other 
subjects; in this subject we are concerned with first developing system models, in 
a form which is amenable to system analysis and control design.

5.2 Electrical systems
� as well as writing differential ‘equations of motion’ using the Kirchhoff current and

voltage laws and the constitutive equations shown in Table IV, it is quite common 
with  electrical  systems  to  work  directly  in  the  (Laplace)  frequency  domain  using
‘operational impedances’.

Time domain Frequency domain

� Laplace transform constitutive
equation: 

a(s)E(s) = b(s)I(s)

Inductor

e = L�di/dt
� i.e.: e = Ldi

E(s) = Ls�I(s)
� where ZL = Ls

Resistor

e = R�i E(s) = R�I(s)
� where ZR = R

Capacitor

C�de/dt = i
� i.e.: CDe = I

CsE(s) = I(s)
� where ZC = 1/Cs
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� with operational impedances, we may use the familiar rules for serial and parallel
combinations:

Series Parallel
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5.3 Example:   Finding a circuit transfer function

(i) Using differential equations 
� using Kirchoff’s voltage law (‘KVL’ – the equilibrium equation):

L R C ie e e e� � � (5.1)

� the constitutive equations for each element are
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(5.2)

� the output potential (the constraint equation):
R C Oe e e� � (5.3)

� substituting (5.2) into (5.1) gives
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(5.4)

� Laplace transforming (5.4), with zero i.c.s gives
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(5.5)

� hence
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(5.6)

(ii) Using operational impedances

� considering the circuit as a voltage divider:
0 R C

i L R C
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(5.7)

� thus:
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(5.8)

� which is the same as (5.6) above.

5.4 Cascaded transfer functions
� the transfer function of two cascaded (series) elements can be found as the

product of the individual transfer functions, provided that the second element
does not ‘load’ the first (the effect of loading is discussed further next semester).
In electrical terms, loading does not occur if the input impedance of the second
element is very high (and ideally infinite) compared to the output impedance of
the first element.

� for example, consider two filter circuits:
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� the transfer functions given are for an open-circuit output in both cases, which
can also be considered to be a ‘virtual’ infinite impedance. If the two circuits are
cascaded, the second "loads" the first:

� exercise: show that the transfer function of the cascaded filters is
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(5.9)

� if we wanted to cascade the two filters without loading the first, we could insert an
isolating amplifier (also known as a ‘buffer’) between them:

� the transfer function is then:
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� the isolating amplifier in the above example could be implemented with an
operational amplifier (which will be studied in greater detail in second semester
and in other subjects).
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