
 

Lecture 3: Modelling - Representation 

 To illustrate the various ways in which a mathematical model of a system may be 
presented, consider a simple ‘mechanical oscillator’: 

Physical model                                   Free body diagram 

 

3.1 Derivation of mathematical model 

 ‘equilibrium’ equation: 
 

 

 

 ‘constitutive’ equations for the spring and the damper:  

The equation set (3.1), (3.2) then constitutes one form of the mathematical model. 

 

3.2 Differential equation representation 

 Substituting (3.2) into (3.1) gives 
 

 
 
 The mechanical oscillator is therefore an example of a ‘second-order’ system i.e. one 
which is modelled by a second-order differential equation, as in (3.3). 

3.3 Transfer function representation 

 Laplace transforming (3.3) gives: 
 

 
 Where the (unilateral) Laplace transform of y (t) is 
 

 
Then, 
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Thus, the differential relationship between u (t) and y (t) has been transformed into 
an algebraic relationship between U(s) and Y(s), which can be solved for Y(s): 

 

Where, 

 
 
Is the transfer function from u to y.  Note that the transfer function is the ratio of the 

response function Y(s) to the input function U(s) when all initial conditions are 
assumed to be zero: 

 

 When the form of the input u(t) is specified, its Laplace transform U(s) may be 
substituted in (3.7), and the output y(t) obtained by inverse Laplace transforming 
this equation. 

3.4 Block diagram representation 

 A block diagram is a graphical representation of the system model, which can reveal 
the ‘structure’ of the model more readily than a set of equations. A block diagram 
consists of: 

1. Blocks, which represent the input-output behaviour of independent components 
of the system, 

2. Directed lines, which represent the (uni-directional) signal flows between 
blocks, and 

3. Summing junctions, which represent the addition and/or subtraction of signals. 

 A block is usually labelled with the transfer function of the component it represents, 
and the lines entering and leaving a block are labelled with symbols representing 
the Laplace transforms of the input and output signals: 
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 It is conventional to have the system input signal enter from the left of the diagram, 
and the system output signal exit to the right.  Then, the flow of signals in the 
‘forward paths’ of the system are generally from left to right, while the ‘feedback 
paths’ generally flow from right to left. 

 There is no unique block diagrammatic representation of a given system. Diagrams 
may be rearranged, and blocks combined into larger components, according to 
simple rules of ‘block diagram algebra’. Ultimately, any block diagram may be 
reduced to a single block, which represents the overall transfer function of the 
system. 

 A block diagram may be constructed from the Laplace-transformed equation set. In 
our example, Laplace transforming (3.1) and (3.2) (assuming zero initial conditions) 
yields 

 

 And 

 
 
eq. (3.10) can be represented thus: 

 

 From (2.9), the (Laplace-transformed) dashpot force Fc is proportional to the 
(transformed) velocity sY, which may be obtained by integrating the output from 
the summing junction and scaling the signal by 1/m.  The transfer function for an 
integrator is 1/s.  Similarly, the displacement Y is the integral of the velocity, and 
the spring force Fk is proportional to Y, giving 
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 This detailed block diagram reveals the feedback structure in the dynamics of the 
mechanical oscillator. 

3.5 Significance of the Laplace transform and the transfer function 

 The significance of the Laplace transform representation of signals, and the transfer 
function representation of linear system dynamics, lie in the fact that 

1. The transfer function G(s) shows how signals of the form est are transferred through 
the system, and 

2. The Laplace transform U(s) shows the "contribution" to the signal u(t) made by the 

elementary signal est, for any value of s. 

 Note that if the input to a linear system is of the form est, the output will be of the same 
form, simply scaled in magnitude and possibly time-shifted (because derivatives of 
the function est are constant multiples of the function itself). 

 Thus, if the input is 

 
 
 The output is 

 

 Where both s and U may be complex. 

 the way that linear systems transfer signals of the form est is of particular interest 
because this function is the fundamental ‘building block’ for creating any physically-
realizable signal in a dynamical system.  

Thus, if an input signal can be constructed as a linear combination of components of 

the form est, superposition allows us to construct the output signal from the 

responses to the each of the elementary components. 

 For example, if 

 
 Then 
 

 
In the following sections, we shall see how more complex signals may be 
Constructed-using est as a building block. 


