Lecture 19: Nyquist plots

- the frequency response of the OLTF may also be displayed as a polar plot in an Argand diagram.
- for example, consider again the OLTF from the previous lecture:

$$
\begin{equation*}
G H(s)=\frac{K}{s(s+1)^{2}} \tag{19.1}
\end{equation*}
$$

- where $A(\omega)=|G H(\omega)|$ and $\phi(\omega)=p h[G H(i \omega)]$. A polar plot of $A(\omega)$ vs $\phi(\omega)$ for $K=1$ gives:

19.1 Nyquist stability criterion

- this stability test employs the OLTF displayed in polar form, and is based on Cauchy's argument principle from complex variable theory.
- consider the characteristic equation:

$$
\begin{align*}
A(s)=1+G H(s) & =1+\frac{K\left(s+z_{1}\right)\left(s+z_{2}\right) \ldots\left(s+z_{m}\right)}{\left(s+p_{1}\right)\left(s+p_{2}\right) \ldots\left(s+p_{n}\right)} \\
& =\frac{K\left(s+z_{1}\right)\left(s+z_{2}\right) \ldots\left(s+z_{n}\right)}{\left(s+p_{1}\right)\left(s+p_{2}\right) \ldots\left(s+p_{n}\right)} \tag{19.2}
\end{align*}
$$

- note that the numerator of $A(s)$ is of the same order as the denominator, and that the poles of $A(s)$ are the same as the open-loop poles. Stability is determined by the closed-loop poles, which are the zeros of $A(s)$.
- suppose now that the poles and zeros of some $A(s)$ are as follows in the s plane, and that $A(s)$ is evaluated for values of s on an arbitrary closed contour in the s-plane. The contour may enclose poles or zeros, but not pass through them. This contour will map into the $A(s)$ plane as a closed curve:

- we can write the characteristic equation in the following form

$$
\begin{equation*}
A(s)=\frac{K\left|s+z_{1}\right|\left|s+z_{2}\right| \ldots\left|s+z_{n}\right|}{\left|s+p_{1}\right|\left|s+p_{2}\right| \ldots\left|s+p_{n}\right|} e^{i\left(\phi_{1}+\phi_{2}+\cdots+\phi_{n}-\theta_{1}-\theta_{2} \cdots-\theta_{n}\right)} \tag{19.3}
\end{equation*}
$$

- thus, $A(s)$ can be written in terms of a magnitude and phase $A(s)=|A(s)| e^{i \alpha}$ with the phase given by

$$
\begin{align*}
\alpha=p h[A(s)]= & p h\left(s+z_{1}\right)+p h\left(s+z_{2}\right) \ldots+p h\left(s+z_{n}\right) \\
& -p h\left(s+p_{1}\right)-p h\left(s+p_{2}\right) \ldots-p h\left(s+p_{n}\right) \tag{19.4}\\
= & \phi_{1}+\phi_{2}+\cdots+\phi_{n}-\theta_{1}-\theta_{2}-\theta_{n}
\end{align*}
$$

- in terms of the example, this becomes:

$$
\alpha=\phi_{1}+\phi_{2}-\theta_{1}-\theta_{2}
$$

- when there are no singularities within the contour (as above), the phases of the vectors from poles and zeros outside the contour will vary somewhat, but will have a net change of zero over one complete contour.
- however, when there are singularities within the contour, the phase from each singularity inside the contour will undergo a net change of 360°, and will induce similar cyclic changes in α. These correspond to encirclements of the origin by the closed curve in the $A(s)$ plane.
- if we travel clockwise along C in s space, zeros of $A(s)$ inside the contour C will lead to clockwise encirclements of the origin; poles will cause anticlockwise encirclements
- examples:

- in this case the contour C encloses 1 zero of $A(s)$, thus ϕ_{2} goes through -360° (clockwise) and $\theta_{1}, \theta_{2}, \phi_{1}$ go through 0^{0}. α therefore goes through -360°.

- here the contour C encloses 2 zeros of $A(s)$, thus ϕ_{1} and ϕ_{2} each go through -360° (clockwise) and θ_{1}, θ_{2} go through 0°. α therefore goes through -720°.

- here the contour C encloses 1 pole of $A(s)$, thus θ_{1} goes through -360° (clockwise) and $\phi_{1}, \phi_{2}, \theta_{2}$ go through $0^{\circ} . \alpha$ therefore goes through 360°.
- now, we are interested in the number of zeros of $A(s)$ in the RHP, since these determine the closed loop stability of our system. Hence we make the contour C encircle the entire RHP:

- if the RHP contains a pole or zero of $A(s)=1+G H(s)$ then the evaluation of $A(s)$ will encircle the origin.
- alternatively, since $A(s)=1+G H(s)$, the plot of the OLTF $G H(s)$ is simply that of $A(s)$ shifted to the left by 1 , the evaluation of $G H(s)$ will encircle the point $-1+i 0$ if the RHP contains a pole or zero. For example:

- as we know, any real system must have the order of the numerator of $G H(s)$ less than or equal to the order of the denominator.
- consider the evaluation of $G H(s)$ at some point on an arc of infinite radius:

$$
\begin{equation*}
[G H(s)]_{s \rightarrow \infty}=\left[\frac{K\left(s+z_{1}\right)\left(s+z_{2}\right) \ldots\left(s+z_{m}\right)}{\left(s+p_{1}\right)\left(s+p_{2}\right) \ldots\left(s+p_{n}\right)}\right]_{s \rightarrow \infty} \tag{19.5}
\end{equation*}
$$

1. Because all poles and zeros are infinitely far from all points on this arc, the phase angles from all these poles and zeros will be the same.
2. all terms in the numerator $\left|s+z_{m}\right|$ will tend to ∞ and those in the denominator $\left|s+p_{n}\right|$ will tend to 0

- both the magnitude and phase of $G H(s)$ are therefore dependent on the relative order of the numerator and denominator (ie. the relative number of OLP's than OLZ's):

$$
\begin{equation*}
[G H(s)]_{s \rightarrow \infty}=\left[\frac{K\left(s+z_{1}\right)\left(s+z_{2}\right) \ldots\left(s+z_{m}\right)}{\left(s+p_{1}\right)\left(s+p_{2}\right) \ldots\left(s+p_{n}\right)}\right]_{s \rightarrow \infty} \sim\left|s^{m-n}\right|_{s \rightarrow \infty} e^{i(m-n) \theta} \tag{19.6}
\end{equation*}
$$

- when the order of the numerator is less than that of the denominator (ie. there are more OLP's than OLZ's):

$$
\begin{equation*}
[G H(s)]_{s \rightarrow \infty} \sim\left|\frac{1}{s^{n-m}}\right|_{s \rightarrow \infty} e^{i(m-n) \theta}=0 \tag{19.7}
\end{equation*}
$$

- ie. an arc of infinite radius in the s plane maps onto the origin in the $G H(s)$ plane
- when the order of the numerator is the same as that of the denominator (ie. there are the same number of OLP's and OLZ's):

$$
\begin{equation*}
[G H(s)]_{s \rightarrow \infty} \sim\left|s^{0}\right|_{s \rightarrow \infty} e^{0}=1 \tag{19.8}
\end{equation*}
$$

- ie. an arc of infinite radius in the s plane maps onto the point 1 in the $G H(s)$ plane
- thus, depending on the relative order of the numerator and denominator, $G H(s)$ will evaluate to either zero or a constant on the arc of infinite radius. Thus, any encirclements of the point $-1+i 0$ will only occur for that part of the contour C lying on the i i axis ie. we can use the OLFR.
\Rightarrow hence the evaluation can be completed by plotting the open-loop frequency response $G H(i \omega)$ for $\omega \rightarrow-\infty$ to $\omega \rightarrow+\infty$.

- we can now state the Nyquist stability Criterion:

If a system is open-loop stable, it will be closed-loop stable if the point $-1+i 0$ in the GH $(i \omega)$ plane is not encircled in a clockwise sense for $\omega \rightarrow-\infty$ to $\omega \rightarrow+\infty$.

If a system is open-loop unstable, it will be closed-loop stable if the point $-1+i 0$ in the GH $(i \omega)$ plane is encircled anticlockwise a number of times at least equal to the number of poles of GH $(i \omega)$ in the RHP for $\omega \rightarrow-\infty$ to $\omega \rightarrow+\infty$.

- that is, the number of zeros of $A(s)=1+G H(s)$ in the RHP (the number of unstable closed-loop poles), is given by

$$
\begin{equation*}
Z=N+P \tag{19.9}
\end{equation*}
$$

- where $N=$ the number of clockwise encirclements of $-1+i 0$ and $P=$ the number of poles of $G H(s)$ in the RHP.

