
 

Lecture 18: Frequency-Domain Tests of stability

� consider the standard single-loop system:

� we can determine the stability of the closed-loop system by evaluating the
frequency response of the open-loop transfer function � �GH i� . This can be
done by using the following means:

1. Bode plot: the frequency response in terms of the magnitude and phase
2. Nichols chart: the Log-magnitude vs the phase
3. Nyquist plot: a polar plot of the complex number � �GH i� .

� for stability, the CLTF � � � �/Y s R s  must have no poles in the right-half of the s-
plane). That is, the characteristic polynomial � � � �1A s GH s� �  must have no
zeros in the RHP.

Example
� earlier, we used the root locus technique to investigate the variation of the zeros

of � �A s  with (typically) the loop gain, when � �GH s  was available in factored
form.

� consider the following system and its root locus:



� the characteristic equation for this system is:
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� the root locus shows the variation of the zeros of � �A s  as K  varies from 0 to �.
All points on the locus satisfy the following conditions:

the magnitude condition: � � 1GH s �

the phase condition: � � � � 02 1 180 , 0, 1, 2,ph GH s k k� � � � �� �� � �

18.1 The gain and phase margins
� the system is neutrally stable when the closed-loop roots are at s i�� �  (when

2K �  in this case). At this point we have
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� whether these conditions for neutral stability are met can be determined from the
Bode plot of the OLTF � �GH i� . 

� for our example, � � � �
2/ 1GH s K s s� �� �

� �
:



� as is the case in many systems, the above example shows that increasing gain
leads to instability, whilst reducing the gain tends to stabilise the system. Note
that this is not always true, however.

� in general, the system will be stable if � � 1GH i� �  at the frequency for which

� � 0180ph GH i� � �� �� � . For such cases, the degree of relative stability can be
expressed by the Gain Margin (GM) and Phase Margin (PM):

The gain margin indicates the amount by which the gain may be increased before
the system becomes unstable:

� �11/GM GH i�� (18.3)

� where 1�  is the phase crossover frequency: � � 0
1 180ph GH i� � �� �� �

The phase margin indicates the additional phase lag which can be tolerated in the
OLTF at the gain crossover frequency c�  before the system becomes unstable:

� �0180 cPM ph GH i�� � � �� � (18.4)

� a qualitative understanding of this stability condition can be gained from the
following argument. Suppose a switch is opened in the feedback path:

1. suppose that the reference input R  is sinusoidal, and the frequency is
adjusted until the feedback signal in the open circuit lags the input by exactly
180�. 

2. then, if the switch is closed, the negative feedback signal will be in phase
(360� phase "difference") with the reference input, which may now be
removed so that all excitation of the system will come from its own feedback.

3. if the open-loop gain � �1GH i�  at this frequency is less than 1, the oscillations

will die out; if it exceeds unity they will grow. If � �1 1GH i� � , the system will
exhibit a sustained oscillation at this frequency, the phase crossover
frequency 1� ; i.e. it will be neutrally stable.



18.2 Nichols and Nyquist charts
� another way to display the open-loop frequency response is to plot the Bode

diagram coordinates against each other. A plot of the Log-magnitude
� �logLm GH i��  vs the phase � � � �ph GH i� � �� � �� �  is known as a Nichols

chart:
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� a polar plot of the complex number GH  is termed the Nyquist plot.
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