Lecture 17: Procedure for plotting root loci

- in lecture 16 we considered the characteristic equation of a closed loop transfer function with the form

$$
\begin{equation*}
1+K \cdot B(s) / A(s)=0 \tag{17.1}
\end{equation*}
$$

- where $K=$ the parameter of interest for defining the locus and $A(s)$ and $B(s)$ are factored polynomials:

$$
\begin{align*}
& B(s)=\left(s+z_{1}\right)\left(s+z_{2}\right)\left(s+z_{3}\right) \ldots\left(s+z_{m}\right) \tag{17.2}\\
& A(s)=\left(s+p_{1}\right)\left(s+p_{2}\right)\left(s+p_{3}\right) \ldots\left(s+p_{n}\right)
\end{align*}
$$

- ie. there are m open loop zeros and n open loop poles
- therefore a simple definition of the root locus is

The root locus is the set of values of s for which $1+K . B(s) / A(s)=0$ is satisfied as the real parameter K varies from 0 to $+\infty$.

- in lecture 16 we established two conditions in order for values of s to satisfy the characteristic equation:

$$
\begin{align*}
\text { magnitude condition } & \left|\frac{B(s)}{A(s)}\right| & =\frac{1}{K} \\
\text { phase condition } & p h\left(\frac{B(s)}{A(s)}\right) & =(2 k-1) \cdot 180^{\circ} \text { for } k=0, \pm 1, \pm 2, \ldots \tag{17.3}
\end{align*}
$$

- equivalently, the phase condition in equation (17.3) can instead be written as

$$
\begin{equation*}
\sum_{i=1}^{m} p h\left(s+z_{i}\right)-\sum_{i=1}^{n} p h\left(s+p_{1}\right)=(2 k-1) \cdot 180^{\circ} \tag{17.4}
\end{equation*}
$$

- with the conditions (17.3) determining which values of s belong to the characteristic equation, we can develop general rules for plotting the root loci of arbitrary systems.

17.1 Procedure for plotting root loci

1. Plot the open-loop poles (X) and zeros (0) on the s-plane
2. If the characteristic polynomial is order n , there will be n closed-loop poles and hence n branches of the root locus.
3. The branches of the locus begin at the open-loop poles and terminate at the open-loop zeros.

- this can be seen by rewriting equation (17.1) as

$$
\begin{equation*}
A(s)+K \cdot B(s)=0 \tag{17.5}
\end{equation*}
$$

- thus, if $K=0$

$$
\begin{equation*}
A(s)=0 \Rightarrow s=-p_{i}, i=1,2, \ldots, n \tag{17.6}
\end{equation*}
$$

- ie. the open loop poles
- and if $K \rightarrow \infty$

$$
\begin{equation*}
K \rightarrow \infty \Rightarrow B(s)=0 \Rightarrow s=-z_{i}, i=1,2, \ldots, m \tag{17.7}
\end{equation*}
$$

- ie. the open loop zeroes
- note that it there are more branches than open-loop zeros (ie. $n>m$), then $n-m$ branches terminate at $s \rightarrow \infty$.

4. The locus lies on the real axis whenever there is an odd number of open-loop poles and zeros to the right.

- this follows simply from the phase condition

5. The root loci are symmetrical about the real axis.

- complex roots appear as conjugate pairs.

6. Branches that terminate at infinity do so asymptotically to lines oriented at angles:

$$
\begin{equation*}
\theta_{k}=\frac{(2 k-1) 180^{\circ}}{(n-m)} k=0,1,2, \ldots,(n-m-1) \tag{17.8}
\end{equation*}
$$

- the asymptotes intersect the real axis at the 'centroid' of the open-loop poles (regarded as having mass $=+1$) and zeros (with mass $=-1$); i.e., at

$$
\begin{align*}
s & =\frac{\sum \text { poles }-\sum \text { zeros }}{(n-m)} \\
& =\frac{\sum\left(-p_{i}\right)-\sum\left(-z_{i}\right)}{(n-m)} \tag{17.9}
\end{align*}
$$

- for sufficiently large s, the phases of the vectors from all the open-loop poles and zeros are be approximately equal. In the phase condition summation (17.4), the phases of the vectors from the m poles will thus be cancelled by the phases of the vectors from the zeros.

- the remaining n-m vectors (each with phase θ_{k}) must satisfy

$$
\begin{equation*}
(n-m) \theta_{k}=(2 k-1) 180^{\circ} \tag{17.10}
\end{equation*}
$$

- see the textbook for a proof of centroid formula.

7. Branches of the locus leave the open-loop poles at departure angles given by

$$
\begin{align*}
\theta_{\text {dep }} & =(2 k-1) \cdot 180^{\circ}-\sum(\text { angles from other poles })+\sum(\text { angles from zeros }) \\
& =(2 k-1) \cdot 180^{\circ}-\sum_{i=1}^{n-1} \theta_{i}+\sum_{i=1}^{m} \varphi_{i} \tag{17.11}
\end{align*}
$$

- this condition follows from the phase condition.

8. Branches of the locus reach the open-loop zeros at arrival angles given by

$$
\begin{align*}
\varphi_{\text {arr }} & =(2 k-1) \cdot 180^{\circ}-\sum(\text { angles from other poles })+\sum(\text { angles from zeros }) \\
& =(2 k-1) \cdot 180^{\circ}+\sum_{i=1}^{n} \theta_{i}-\sum_{i=1}^{m-1} \varphi_{i} \tag{17.12}
\end{align*}
$$

9. Multiple roots occur at "breakaway" or "break-in" points on the real axis, or in complex conjugate pairs, where

$$
\begin{equation*}
\frac{d K}{d s}=0 \tag{17.13}
\end{equation*}
$$

- i.e. at values of s for which

$$
\begin{equation*}
A(s) \frac{d B(s)}{d s}-B(s) \frac{d A(s)}{d s}=0 \tag{17.14}
\end{equation*}
$$

- this can be seen by differentiating equation (17.1):

$$
\begin{gather*}
\frac{d}{d s}\left[\frac{K \cdot B(s)}{A(s)}\right]=0 \\
\Rightarrow \frac{K \cdot B(s)}{A(s)} \underbrace{\frac{d K}{d s}}_{=0}+K \underbrace{\left[\frac{1}{A(s)} \frac{d B(s)}{d s}+B(s) \frac{d}{d s}\left(\frac{1}{A(s)}\right)\right]}_{d[B(s) / A(s)] / d s}=0 \tag{17.15}\\
\Rightarrow A(s) \frac{d B(s)}{d s}-B(s) \frac{d A(s)}{d s}=0
\end{gather*}
$$

- for example, moving along the real axis from an open-loop pole towards a breakaway point, K increases until it reaches a maximum at the breakaway point and then decreases as the second open-loop pole is approached. Similarly K increases from a minimum at a break-in point along each branch approaching an open-loop zero on the real axis. In general, K will have a stationary value where there is a multiple root.

10. At any multiple root, the tangents to the branches of the locus divide the surrounding space into sectors of included angle $180^{\circ} / q$, where q is the order of the root. Branches enter and leave the multiple root location alternately.

11. Values of K for which the branches cross the imaginary axis can be found by applying the Routh stability criterion. The characteristic equation obtained by substituting $s=i \omega$ and the critical values of K may be solved for the $i \omega$ axis crossover frequencies.
12. Determining the general shape of the root locus may be assisted by noting that, provided $m \leq n-2$, the sum of the closed-loop roots is constant and independent of K. Hence, if some of the roots move to the left as K is increased, others must move to the right to conserve the sum of the roots.

- this can be seen from once again considering the characteristic equation, where we label the roots of the characteristic equation r_{i}

$$
\begin{align*}
& A(s)+K B(s)=0 \\
& \Rightarrow \prod_{i=1}^{n}\left(s+p_{i}\right)+K \prod_{i=1}^{m}\left(s+z_{i}\right)=\prod_{i=1}^{n}\left(s+r_{i}\right) \tag{17.16}
\end{align*}
$$

- where p_{i}, z_{i} are the open loop poles and zeros respectively and r_{i} are the roots of the characteristic equation (ie. the closed loop poles)
- from equation (17.16), it follows that

$$
\begin{equation*}
\left(s^{n}+\sum p_{i} s^{n-1}+\ldots\right)+K\left(s^{m}+\sum z_{i} s^{m-1}+\ldots\right)=s^{n}+\sum r_{i} s^{n-1}+\ldots \tag{17.17}
\end{equation*}
$$

- if $m<n-1$, equation (17.17) shows that the term $K s^{m}$ has lower order than the terms $\sum p_{i} s^{n-1}$ and $\sum r_{i} s^{n-1}$. Thus

$$
\begin{equation*}
\sum p_{i}=\sum r_{i} \tag{17.18}
\end{equation*}
$$

- if $m<n-1$
- now equation (17.18) is independent of K, so the sum of the close loop poles is constant and equal to the sum of the open loop poles if $m<n-1$

13. The gain K for a specific point on the locus, $s=s_{1}$, may be calculated from the magnitude condition

$$
\begin{align*}
K_{s=s_{1}} & =\left|\frac{A\left(s_{1}\right)}{B\left(s_{1}\right)}\right| \\
& =\frac{\left|s_{1}+p_{1}\right|\left|s_{1}+p_{2}\right| \ldots}{\left|s_{1}+z_{1}\right|\left|s_{1}+z_{2}\right| \ldots} \tag{17.19}
\end{align*}
$$

- This is illustrated graphically:

14. Finding roots for a given value of K usually follows after having determined K such that the dominant closed-loop poles have desirable values. The location of the remaining roots may be found by trial-and-error application of the magnitude condition, or dividing the characteristic equation by the known roots and factoring the remainder.
