Lecture 17: Procedure for plotting root loci

in lecture 16 we considered the characteristic equation of a closed loop transfer
function with the form

1+ K.B(s)/ A(s)=0 (17.1)

where K = the parameter of interest for defining the locus and A(s) and B(s) are
factored polynomials:

B(s)=(s+2)(s+2)(s+2)..(s+z,)
A(s)=(s+p)(s+ P,)(s+ P;)--(s+ p,)
ie. there are m open loop zeros and n open loop poles

(17.2)

therefore a simple definition of the root locus is

The root locus is the set of values of s for which 1+K.B(s)/ A(s)=0 is
satisfied as the real parameter K varies from 0 to +oo.

in lecture 16 we established two conditions in order for values of s to satisfy the
characteristic equation:

magnitude condition Ble|_1
A(s)| K
(17.3)
B(s)

phase condition ph( J=(2k—1).180° for k=0,+1 +2, ...

As)

equivalently, the phase condition in equation (17.3) can instead be written as
m n
2 ph(s+z)- X ph(s+ p,) =(2k-1).180° (17.4)
i=1 i=1

with the conditions (17.3) determining which values of s belong to the
characteristic equation, we can develop general rules for plotting the root loci of
arbitrary systems.

17.1 Procedure for plotting root loci

1.

2.

Plot the open-loop poles (X) and zeros (0) on the s-plane

If the characteristic polynomial is order n, there will be n closed-loop poles and
hence n branches of the root locus.

The branches of the locus begin at the open-loop poles and terminate at the
open-loop zeros.

e this can be seen by rewriting equation (17.1) as



A(s)+K.B(s)=0 (17.5)

thus, if K=0
A(s)=0= s=-p,i=12..,n (17.6)

ie. the open loop poles

and if K > o
K—>w=B(S)=0=>s=-z,i=12..m (17.7)

ie. the open loop zeroes

note that it there are more branches than open-loop zeros (ie. n>m), then
n—m branches terminate at s— «.

4. The locus lies on the real axis whenever there is an odd number of open-loop
poles and zeros to the right.

this follows simply from the phase condition

5. The root loci are symmetrical about the real axis.

complex roots appear as conjugate pairs.

6. Branches that terminate at infinity do so asymptotically to lines oriented at angles:

9K=M k=012,..,(n-m-1) (17.8)
(n—-m)

the asymptotes intersect the real axis at the ‘centroid’ of the open-loop poles
(regarded as having mass = +1) and zeros (with mass = -1); i.e., at

. > poles—>" zeros
(n—m)
:Z(—?)—Z)(—a)

for sufficiently large s, the phases of the vectors from all the open-loop poles
and zeros are be approximately equal. In the phase condition summation
(17.4), the phases of the vectors from the m poles will thus be cancelled by
the phases of the vectors from the zeros.
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e the remaining n-m vectors (each with phase 6, ) must satisfy

(n-m)g, =(2k-1)180° (17.10)
e see the textbook for a proof of centroid formula.
. Branches of the locus leave the open-loop poles at departure angles given by

Oy = (2k—1).180° - >.(angles from other poles)+>.(angles from zeros)

1l m 17.11
=(2k-1.180°-> 6.+ > ¢, ( )
i=1 i=1

e this condition follows from the phase condition.
. Branches of the locus reach the open-loop zeros at arrival angles given by
@, =(2k—1).180°— > (angles from other poles)+>.(angles from zeros)

= (2k—1).180°+i9i —il(pi

i=1 i=1

(17.12)

. Multiple roots occur at “breakaway” or “break-in” points on the real axis, or in
complex conjugate pairs, where

K _o (17.13)
ds

e j.e. at values of s for which

A BB dB(s)

dA(S)

—-B(s)——=0 (17.14)

e this can be seen by differentiating equation (17.1):

&5

K.B(s) dK 1 dB(s) dl 1 )|
A(S) _ K[A(S) B(S)E(@H -0 (17.15)
i a[B(s)/A(s)/ds
= A(s) dl?j(sS) -~ B(s)dAd—(SS) =

e for example, moving along the real axis from an open-loop pole towards a
breakaway point, K increases until it reaches a maximum at the breakaway
point and then decreases as the second open-loop pole is approached.
Similarly K increases from a minimum at a break-in point along each branch
approaching an open-loop zero on the real axis. In general, K will have a
stationary value where there is a multiple root.



10.At any multiple root, the tangents to the branches of the locus divide the
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12.

surrounding space into sectors of included angle 180°/q, where q is the order of
the root. Branches enter and leave the multiple root location alternately.
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.Values of K for which the branches cross the imaginary axis can be found by
applying the Routh stability criterion. The characteristic equation obtained by
substituting s=i® and the critical values of K may be solved for the i®w axis
crossover frequencies.

Determining the general shape of the root locus may be assisted by noting that,
provided m<n-2, the sum of the closed-loop roots is constant and independent
of K. Hence, if some of the roots move to the left as K is increased, others must
move to the right to conserve the sum of the roots.

e this can be seen from once again considering the characteristic equation,
where we label the roots of the characteristic equation r,

A(s)+KB(s)=0

:1:[(3+ p)+ Klj(s+;):1:[(s+ r)

e where p, z are the open loop poles and zeros respectively and r, are the
roots of the characteristic equation (ie. the closed loop poles)

(17.16)

e from equation (17.16), it follows that
(S"+Zps™t+..)+K(s"+Xz8™ +..) ="+ X" +.. (17.17)

e if m<n-1, equation (17.17) shows that the term Ks™ has lower order than
the terms X ps™™ and Xrs". Thus

rp=Xxr (17.18)
e if m<n-1



e now equation (17.18) is independent of K, so the sum of the close loop poles
is constant and equal to the sum of the open loop poles if m<n-1

13.The gain K for a specific point on the locus, s=s;, may be calculated from the
magnitude condition

A(s)

B(s)

_|s+pfls+p,l-
s+ 28+ 2]

=5

(17.19)

e This is illustrated graphically:

14.Finding roots for a given value of K usually follows after having determined K
such that the dominant closed-loop poles have desirable values. The location of
the remaining roots may be found by trial-and-error application of the magnitude
condition, or dividing the characteristic equation by the known roots and factoring
the remainder.
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