Lecture 14: The effects of feedback-Steady State Erros.

consider the block diagram of a typical single-loop system:
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where each block represents:
A(s) input elements, prefiltering

G. (s) controller and actuator dynamics
G.(s) plant dynamics

Hs(S) sensor dynamics, feedback elements of controller

and each signal is:

reference (command) input
' sensor output
' actuating error

plant input

controlled variable

system error
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this single loop system can be simplified by block diagram reduction:
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e where B=B' A. Simplifying again:
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e where, in terms of the original system blocks:

L

G(s) = A(S)Gc (S)Gp (s) forward path transfer function
H (s) =H, (5)/ A(s) feedback path transfer function



e note that if A(s)=Hg(s), to within the accuracy of analysis, we have a unity
feedback system:
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e for which system error Y. = R-Y is the same as actuating error E=R-B

14.1 Closed-loop response
e Using:
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e we see that
Y=G.E
=G(R-B)
(14.1)
=G(R-Y.H)
=Y(1+GH)=GR
e thus, the closed loop transfer function (CLTF) is
Y(s)___6() (14.2)
R(s) 1+G(s)H(s)’
e the open loop transfer function (OLTF) is
B(s)
——+=G(s)H (s), 14.3
e and the closed loop characteristic polynomial is
A(s)=1+G(s)H (s) (14.4)
e other closed-loop transfer functions are:
E_ 1 Y. _Y-R_1+G(H-1) B_ GH (14.5)

R 1+GH' R R 1+GH 'R 1+GH

e note the important feature that, as equations (14.2) and (14.5) show, all closed-
loop TFs have the same characteristic polynomial A(s)



14.2 Effects of feedback
e consider the mechanical and electrical dynamics of a DC motor:
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e where:
v, applied voltage
R, armature resistance
L, armature inductance
e=K,Q, back EMF of motor
T=Ki, torque applied to motor
Q, angular velocity of rotor
J, rotor moment of inertia
b viscous friction coefficient

e from Newton, the rotor dynamics are governed by
JQ +bQ =Ki +T (14.6)
e where T is a load torque disturbance

e the armature inductance is often small, and is then neglected. Using KVL, we get
KQ, +Ri, =V, (14.7)

e a block diagram of equations (14.6) and (14.7) is
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e Laplace transforming equations (14.6) and (14.7) gives
(S‘]m+b)Qm =Kl +T,

(14.8)
KeQm + Ral a :Va

e solving for |, and expressing equations (14.8) as a single equation gives



A

= (TmS'l‘l)Va command response
+(TTB+1)T' disturbance response
e where
_ Ki
(bR +KK,)
_ R,
(bR, +K/K,)

InR,

Tn = (bR, +K.K.)

e thus, the block diagram above can be simplified to
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e velocity (ie. tachometric) feedback is often introduced by using a small permanent
magnet machine that produces a voltage that is proportional to the rotor speed.

The block diagram then becomes
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e where K, represents the ‘velocity error amplifier’. The closed loop transfer

functions are
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e where
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(14.11)
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(K,AK, +1) (14.12)
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equations (14.9) and (14.11) contain only first order lags, and therefore represent
purely exponential time responses.

14.2.1 Steady state command response

consider now the steady state command response (T, =0):
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if K,AK,>1, which is deliberately achieved by setting K, >1, equation (14.13)

becomes
(ﬁj L (14.14)
S

ie. the steady state response of the motor becomes insensitive to variations in
any term that describes the motor itself. This may be a very desirable feature
since motor wear, for example, becomes unimportant in terms of setting the
steady state speed.

note the importance of high quality sensing — if the tachometer degrades (ie. K,
changes), then we are really in trouble!

thus, two illustrated important characteristics of feedback are that it:
1. changes the overall gain

2. reduces the sensitivity to parameter variations

14.2.2 Transient command response

equation (14.11) gives the transient command response
Q, A (14.15)
Vo (Tps+1)

where from equation (14.12), T = L

L =—-"__ Thus, T, >0 as K ,AK, -
(K,AK, +1)



e consider now the unit step response of equation (14.15):
o, (t)= A'[l— exp(—t/Tn;)] (14.16)

e ie. as T,—0, the pole in equation (14.15) becomes ‘faster, and the motor
reaches its steady state speed more quickly.

e thus, another important effect of feedback is that it:

3. changes the system dynamics

e note that this is not without cost — in the example above, the voltage out of the
velocity error amplifier becomes larger as T, — 0. Thus, improved response is at

the cost of a larger error amplifier and increased power consumption.

14.2.3 Steady-state disturbance response
e consider now the steady state command response (V, =0):
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e thus, (&J —0as K,AK, > o
SS

e another important effect of feedback is therefore that it:

4. can reduce the sensitivity of the system to disturbances in load ie. increased
‘disturbance rejection’
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