Lecture 13: Bode plots for systems

- we have now established the basic building blocks for constructing a Bode plot to represent the frequency response of a system. Each of these elements can be sketched rapidly and accurately using high, low and intermediate frequency asymptotes, and a few key points which define the "departure" of the actual curve from the asymptotes.
- then, as shown in the previous lecture, the Bode plot for a complete system, whose transfer function is the product of a number of elementary factors, may be found simply by adding the contributions of each element.
- for example, consider a system with the following transfer function:

$$
\begin{equation*}
G(s)=\frac{100(s+2)}{s\left[s^{2}+4 s+100\right]} \tag{13.1}
\end{equation*}
$$

- which, in 'Bode form’:

$$
\begin{equation*}
G(s)=\frac{2\left(\frac{s}{2}+1\right)}{s\left[\left(\frac{s}{10}\right)^{2}+2(0.2)\left(\frac{s}{10}\right)+1\right]} \tag{13.2}
\end{equation*}
$$

- we can now draw the asymptotes, and the departure from these asymptotes, for each of the factors:

1. $2 / s$ - pole at the origin

Note that it is convenient to combine the Bode gain and free-s factors into one factor. The amplitude curve is a straight line of slope $-1 \mathrm{dec} / \mathrm{dec}$. The amplitude of $2 / j \omega$ is unity when $\omega=2 \mathrm{rad} / \mathrm{s}$; hence the straight line passes through the point $\omega=2, A(\omega)=1$. The phase of $2 / j \omega$ is $\varphi(\omega)=-90^{\circ}$ for all frequencies.
2. $(s / 2+1)$ - first order lead

This factor has a low-frequency amplitude asymptote $A(\omega)=1$ (i.e., $L m=0$), a corner frequency of $\omega=2 \mathrm{rad} / \mathrm{s}$, and a high-frequency asymptote with a slope of $+1 \mathrm{dec} / \mathrm{dec}$. The mid-frequency phase asymptote passes through the point $\omega=2, \varphi(\omega)=+45^{\circ}$.
3. $\left[(s / 10)^{2}+2(0.2)(s / 10)+1\right]^{-1}-2^{\text {nd }}$ order lag

In writing the $2^{\text {nd }}$ order factor in this way, we identify the corner frequency (the undamped natural frequency) as $10 \mathrm{rad} / \mathrm{s}$ and the damping ratio $\zeta=0.2$. The low-frequency amplitude asymptote is $A(\omega)=1$, while the high-frequency asymptote is a line of slope $-2 \mathrm{dec} / \mathrm{dec}$, passing through $\omega=10, A(\omega)=1$.
For a damping ratio as small as 0.2 , the departure from the asymptote can be
sketched accurately enough by noting that the amplitude ratio at the corner frequency is $Q=1 / 2 \zeta=2.5$. The low- and high-frequency phase asymptotes are 0° and -180° respectively. The mid-frequency asymptote passes through -90° at the undamped natural frequency $\omega_{n}=10 \mathrm{rad} / \mathrm{s}$.

- we then simply add the separate curves to get the amplitude ratio and phase curves for the complete system:

