2.2 Laplace Transform Review

in Figure 2.1(b), where a mathematical function, called a transfer function, is inside
each block, and block functions can easily be combined to yield Figure 2.1 (a) for
ease of analysis and design. This convenience cannot be obtained with the
differential equation.

@ 2.2 Laplace Transform Review

A system represented by a differential equation is difficult to model as a block

diagram. Thus, we now lay the groundwork for the Laplace transform, with which we

can represent the input, output, and system as separate entities. Further, their

interrelationship will be simply algebraic. Let us first define the Laplace transform

and then show how it simplifies the representation of physical systems (Nilsson, 1996).
The Laplace transform is defined as

U] =Fis) = [ e dr 1)

0—

where s = o + jw, a complex variable. Thus, knowing f(¢) and that the integral in Eq. (2.1)
exists, we can find a function, F(s), that is called the Laplace transform of f(r).!

The notation for the lower limit means that even if f{¢) is discontinuous at r = 0,
we can start the integration prior to the discontinuity as long as the integral
converges. Thus, we can find the Laplace transform of impulse functions. This
property has distinct advantages when applying the Laplace transform to the

solution of differential equations A@@Qj@lmp ﬁ(sje?élfauous
att = 0. Using differential equations,fwe to solve for the 1n1t1a1 conditions after
the discontinuity knowing the initial conditions before the discontinuity. Using the
Laplace transform we need only know the initial conditions before the discontinuity.
See Kailath (1980) for a more detailed discussion.

The inverse Laplace transform, which allows us to find f(¢) given F(s), is

P7UF(s)] = i / o F(s)e’'ds = f(t)u(t) (2.2)

277"] o—joo

where
ut) =1 t>0
=0 <0

is the unit step function. Multiplication of f(¢) by u() yields a time function that is
zero for t < 0.

Using Eq. (2.1), it is possible to derive a table relating f(¢) to F(s) for specific
cases. Table 2.1 shows the results for a representative sample of functions. If we use
the tables, we do not have to use Eq. (2.2), which requires complex integration, to
find f(¢) given F(s).

'The Laplace transform exists if the integral of Eq. (2.1) converges. The integral will converge if
JoZ If(0)]e™ dr < oo. If |f(£)| < Me”,0 < t < oo, the integral will converge if oo > a1 > 2. We call o,
the abscissa of convergence, and it is the smallest value of o, where s = o + jo, for which the integral exists.
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36 Chapter 2 Modeling in the Frequency Domain

TABLE 2.1 Laplace transform table

Item no. [ F(s)
1. 3(¢) 1
2. u(t) 1
s
1
3. tu(t) 3
4. u(r) n!
st 41
5. e u(r) 1
s+a
6. sin wtu(t) =
§? + w?
7. cos wtu(t) 5
§2 + ?

In the following example we demonstrate the use of Eq. (2.1) to find the
Laplace transform of a time function.

G example 2.1 D

Laplace Transform of a Time Function

PRO%@::a %Fiél)d tlt)tjﬁaceéﬁnﬁOénh ocf: f t)r: Ae "u(r).

SOLU ince the time function does not contain an impulse function, we can
replace the lower limit of Eq. (2.1) with 0. Hence,

F(s) = / f()e™" dt = / Ae e di = A / e gy
0 0 0

A
=— e
s+a

> A
= 23
o S+a 23)

—(s+a)t

In addition to the Laplace transform table, Table 2.1, we can use Laplace
transform theorems, listed in Table 2.2, to assist in transforming between f(¢) and
F(s). In the next example, we demonstrate the use of the Laplace transform
theorems shown in Table 2.2 to find f(¢) given F(s).

G Example 2.2 D

Inverse Laplace Transform
PROBLEM: Find the inverse Laplace transform of Fi(s) = 1/(s + 3)

SOLUTION: For this example we make use of the frequency shift theorem, Item 4
of Table 2.2, and the Laplace transform of f(¢) = tu(t), Item 3 of Table 2.1. If the
inverse transform of F(s) =1/s? is tu(f), the inverse transform of F(s+a) =
1/(s +a)* is e “tu(r). Hence, f,(t) = e tu(t).
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TABLE 2.2 Laplace transform theorems

Item no. Theorem Name
L LIF(0)] = F(s) = [5° f()edr Definition
2. ZLIkf(1)] = kF(s) Linearity theorem
3. L[f1(@) + ()] = Fi1(s) + Fa(s) Linearity theorem
4. Lle "f(1)] =F(s+a) Frequency shift theorem
5. Z[f(t-T)] = e TF(s) Time shift theorem
1 /s .
6. =_F(= Scaling theorem
2If(a) ; F(a> g
7. &z ili_f} = sF(s) — f(0-) Differentiation theorem
t

[2f ) . _

8 7|54 _ st(s) — sf(0—) — f/(0—) Differentiation theorem
' dt

d'f } gk gk Differentiation th
9. L= =s"F(s) — Y s"(0-) ifferentiation theorem

L dt ;
10. ] IN f(r)dt] = F(s) Integration theorem

0= s
11. f(o0) = lim 5F(s) Final value theorem'
§—

12. f(0+) = lim sF(s) Initial value theorem?

§—00

!For this theorem to yield correct finite results, all roots of the denominator of F(s) must have negative real
parts, and no more than one can be at the origin.

For this theorem to be valid, () must be continuous or have a step discontinuity at ¢ = 0 (that is, no

impulses or their derivatives at t = 0).
premiaimmEeRT? - Apago PDF Enhancer

Partial-Fraction Expansion

To find the inverse Laplace transform of a complicated function, we can convert the
function to a sum of simpler terms for which we know the Laplace transform of each
term. The result is called a partial-fraction expansion. If Fi(s) = N(s)/D(s), where
the order of N(s) is less than the order of D(s), then a partial-fraction expansion can
be made. If the order of N(s) is greater than or equal to the order of D(s), then N(s)
must be divided by D(s) successively until the result has a remainder whose
numerator is of order less than its denominator. For example, if

s2+2s% + 65 +7
Fi(s)=2 =2 7™ 7
1) =—o 53
we must perform the indicated division until we obtain a remainder whose numera-
tor is of order less than its denominator. Hence,

2
s2+s+5
Taking the inverse Laplace transform, using Item 1 of Table 2.1, along with the
differentiation theorem (Item 7) and the linearity theorem (Item 3 of Table 2.2), we obtain

ds(1)

fi() = — T 8(t) + 27! [S2+2S+5] (2.6)

(2.4)

Fi(s)=s+1+ 2.5)

Using partial-fraction expansion, we will be able to expand functions like F(s) =
2/(s*> +s+5) into a sum of terms and then find the inverse Laplace transform for
each term. We will now consider three cases and show for each case how an F(s) can be
expanded into partial fractions.
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Case 1. Roots of the Denominator of F(s) Are Real and Distinct An example of an
F(s) with real and distinct roots in the denominator is

2

FO) = 55 D652 (2.7)

The roots of the denominator are distinct, since each factor is raised only to unity
power. We can write the partial-fraction expansion as a sum of terms where each
factor of the original denominator forms the denominator of each term, and
constants, called residues, form the numerators. Hence,

2 K K>

F(s) = = 2.8
= D6+ 6D 512 (28)
To find K, we first multiply Eq. (2.8) by (s + 1), which isolates K;. Thus,
(S + 1)K2
= —_— = 2.
(s+2) ! (s+2) (29)

Letting s approach —1 eliminates the last term and yields K1 = 2. Similarly, K, can be
found by multiplying Eq. (2.8) by (s 4+ 2) and then letting s approach —2; hence, K, = —2.

Each component part of Eq. (2.8) is an F(s) in Table 2.1. Hence, f{(¢) is the sum
of the inverse Laplace transform of each term, or

f(t) = (2™ — 2e™2u(r) (2.10)

In general, then, given an F(s) whose denominator has real and distinct roots, a
partial-fraction expansion,

N(s) N(s
Apagsy;) PPE Fahar iké+§m' ) (5 +p,)
K + K3 ot K R Ky
(s+p1)  (s+p2) (5 +pm) (s +p,)

(2.11)

can be made if the order of N(s) is less than the order of D(s). To evaluate each
residue, K;, we multiply Eq. (2.11) by the denominator of the corresponding partial
fraction. Thus, if we want to find K,,, we multiply Eq. (2.11) by (s + p,,) and get

B (s +pn)N(s)
4P ) = oGm0 (s T o)+ 70)
= (s+pm)ﬁ+(s+pm)(sf7;2)+~-+l(m 4o
+ (5 +Pm) (H'; ) (2.12)

If we let s approach —p,,, all terms on the right-hand side of Eq. (2.12) go to zero
except the term K,,, leaving

(475N (s) . o13)

(s +p)(s+p2) - Lspm) - (S+Pu) ey,

The following example demonstrates the use of the partial-fraction expansion
to solve a differential equation. We will see that the Laplace transform reduces the
task of finding the solution to simple algebra.
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G example 2.3 D

Laplace Transform Solution of a Differential Equation

PROBLEM: Given the following differential equation, solve for y() if all initial
conditions are zero. Use the Laplace transform.

Py . dy

— + 12—+ 32y = 32u(t 2.14

SOLUTION: Substitute the corresponding F(s) for each term in Eq. (2.14), using
Item 2 in Table 2.1, Items 7 and 8 in Table 2.2, and the initial conditions of y(¢) and
dy(t)/dt given by y(0—) =0 and y(0—) =0, respectively. Hence, the Laplace
transform of Eq. (2.14) is

s?Y (s) + 12sY (s) + 32Y(s) = 3s—2 (2.15)

Solving for the response, Y(s), yields

32 32
Y(s) = S(2+125+32) s(s+4)(s+8) (2.16)

To solve for y(¢), we notice that Eq. (2.16) does not match any of the terms in Table
2.1. Thus, we form the partial-fraction expansion of the right-hand term and match
each of the resulting terms with F(s) in Table 2.1. Therefore,

3ZA\pa_gj,(g+PQF+E,Qhancer

YO = 79618 s s+ d G548 2.17)

where, from Eq. (2.13),

32
K= ram s, ! (2.18a)
Ky =- (ﬁ I (2.18b)
32
K= gl - 1 (2.18¢)
Hence,
1 2 1

YO =679 549 (2.19)

Since each of the three component parts of Eq. (2.19) is represented as an
F(s) in Table 2.1, y(¢) is the sum of the inverse Laplace transforms of each term.
Hence,

y(t) = (1 =2 + e u(r) (2.20)
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MATLAB

Chapter 2 Modeling in the Frequency Domain

StudentswhoareusingMATLAB shouldnowrunch2pl throughch2p8
inAppendix B. This is your first MATLAB exercise. Youwill learn how
to use MATLAB to (1) represent polynomials, (2) find roots of poly-
nomials, (3) multiply polynomials, and (4) find partial-fraction
expansions. Finally, Example 2.3 will be solved using MATLAB.

Trylt 2.1

Use the following MATLAB
and Control System Toolbox
statement to form the linear,
time-invariant (LTI) transfer
function of Eq. (2.22).

F=zpk(], -1 =2 =2], 2)

Trylt 2.2

Use the following MATLAB

statements to help you get

Eq. (2.26).

numf=2;

denf=poly([—-1 —2 =2]);

[k,p, k]l =residue...
(numf, denf)

The u(f) in Eq. (2.20) shows that the response is zero until £ = 0. Unless
otherwise specified, all inputs to systems in the text will not start until ¢ = 0. Thus,
output responses will also be zero until ¢ = 0. For convenience, we will leave off the
u(t) notation from now on. Accordingly, we write the output response as

y(t)=1—2e 4 48 (2.21)
Case 2. Roots of the Denominator of F(s) Are Real and Repeated An example of
an F(s) with real and repeated roots in the denominator is

2

Fis) = 6+ D(s+2)

(2.22)

The roots of (s + 2)2 in the denominator are repeated, since the factor is raised to an
integer power higher than 1. In this case, the denominator root at —2 is a multiple
root of multiplicity 2.

We can write the partial-fraction expansion as a sum of terms, where each
fact %g HOIPQ' F fo lﬁei ipator of each term. In addition, each
mulm (Qen ra adoﬁﬁ‘\ ﬁl@gtsisting of denominator factors of
reduced multiplicity. For example, if

2 K K, K;

F(S):(s+1)(s+2)2:(S+1)+(s+2)2+(5+2)

(2.23)

then K; =2, which can be found as previously described. K, can be isolated by
multiplying Eq. (2.23) by (s + 2)% yielding

K
(5+2)° ——+ Ky + (s +2)K3

Y (2.24)

s+l

Letting s approach —2, K, = —2. To find K3 we see that if we differentiate Eq. (2.24)
with respect to s,

=2 _ b+ 2;;‘ K1+ Ks (2.25)

(s+17° (s+1

K3 is isolated and can be found if we let s approach —2. Hence, K3 = —2.
Each component part of Eq. (2.23) is an F(s) in Table 2.1; hence, f(¢) is the sum
of the inverse Laplace transform of each term, or
f(t) =2e" —2te ™ —2e7% (2.26)

If the denominator root is of higher multiplicity than 2, successive differentiation
would isolate each residue in the expansion of the multiple root.
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In general, then, given an F(s) whose denominator has real and repeated roots,
a partial-fraction expansion,

N(s
-3
_ N(s)
(s+p) (s+py)--(s+pu)
K K> K,
S (s+p) - (s+p)" et (s+p1)
K. K,
(s+p) " (s+p) (2.27)

can be made if the order of N(s) is less than the order of D(s) and the repeated roots
are of multiplicity r at —p,. To find K; through K, for the roots of multiplicity greater
than unity, first multiply Eq. (2.27) by (s + p,)" getting Fi(s), which is

Fi(s) = (s+p1)F(s)
_ (s +p1)'N(s)
(s4+p1) (s+py)---(s+p,)
=Ki+ (s +p)Ka+ (s+p) 'Kz +-+ (s +p) 'K,
Kr(s+py) K, (s+p;)
(s +p2) (s+py) (2.28)

Immediately, we can solve for K; 1&9@'915‘&0? }DE Vgan%gr% if we

differentiate Eq. (2.28) with respect to s and then let s approach —p;. Subsequent
differentiation will allow us to find K3 through K,. The general expression for K
through K, for the multiple roots is

1 d7'Fy(s)
(i—1)! dsi!

K; = i=1,2,...,r, 0l=1 (2.29)

S——Pq

Case 3. Roots of the Denominator of F(s) Are Complex or Imaginary An example
of F(s) with complex roots in the denominator is

3

F(s)=———— 2.30
(5) s(s?2+2s+5) (2:30)
This function can be expanded in the following form:
3 Ky Kys+Kz
_— 2.31
s(s2+25+5) s +s2+2s+5 (231)

K is found in the usual way to be % K> and K3 can be found by first multiplying
Eq. (2.31) by the lowest common denominator, s(s*> + 25+ 5), and clearing the
fractions. After simplification with K; = 2, we obtain

3= (Kg +%>s2 + <K3 +§>s +3 (2.32)

41

Trylt 2.3

Use the following MATLAB
and Control System Toolbox
statement to form the LTI
transfer function of Eq. (2.30).

F=t£(3],[1 2 5 0)
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Trylt 2.4

Use the following MATLAB
and Symbolic Math Toolbox
statements to get Eq. (2.38)

from Eq. (2.30).

syms s
f=ilaplace...

(3/(s*(s"2+2 xs+5)));
pretty(f)

Chapter 2 Modeling in the Frequency Domain

Balancing coefficients, (K; +2) =0 and (K3 +£) = 0. Hence K, = —2 and K3 =
— 9% Thus
5 ,

3 3/5 3 542

F _— = -— 2.33
(s) = s(2+25+5) s 582+25+5 (233)
The last term can be shown to be the sum of the Laplace transforms of an
exponentially damped sine and cosine. Using Item 7 in Table 2.1 and Items 2 and 4 in

Table 2.2, we get

A
F[Ae “cos wi] = _Alsta) (2.34)
(s +a)* + o?
Similarly,
—at; Bw
g(f[Be Sin a)t] = ()—22 (235)
st+a) +w
Adding Egs. (2.34) and (2.35), we get
A B
F[Ae “cos wt + Be “sinwt] = Als+a) + Bo (2.36)

(s +a)* + ?

We now convert the last term of Eq. (2.33) to the form suggested by Eq. (2.36)
by completing the squares in the denominator and adjusting terms in the numerator

vitypepoe (PR Heghancer

3/5 36+ +1/2)(2)

F(s) = 2.37
() =="3 (s +1)* +2? (2:37)
Comparing Eq. (2.37) to Table 2.1 and Eq. (2.36), we find
3 3, 1.
fl) = 57 5¢ <cos 2t + 5Sin 2[) (2.38)

In order to visualize the solution, an alternate form of f(f), obtained by
trigonometric identities, is preferable. Using the amplitudes of the cos and sin

terms, we factor out /12 + (1/2)* from the term in parentheses and obtain

3 3 Vet 1/2 .
f(t) ==—24/12+ (1/2)%¢" | ———c0s 2t + —————sin2¢ | (2.39)
>3 V12 4 (1/2) 12+ (1/2)

Letting 1/4/1% + (1/2)* = cos ¢ and (1/2)/4/1> + (1/2)* = sin ¢,
f(t) = % - % \/12 + (1/2)%¢™"(cos ¢ cos 21 + sin ¢ sin 2t) (2.40)

f(t) = 0.6 — 0.671e 'cos(2t — ¢) (2.41)

or
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where ¢ = arctan 0.5 = 26.57°. Thus, f() is a constant plus an exponentially damped
sinusoid.

In general, then, given an F(s) whose denominator has complex or purely
imaginary roots, a partial-fraction expansion,

_ N(s) N(s)
Fls) = D(s) (s+p))(s>+as+b)---
__Ki | Ks+Ky) (2.42)

(s+p1) (s> +as+Db)

can be made if the order of N(s) is less than the order of D(s) p; is real, and (s> +
as + b) has complex or purely imaginary roots. The complex or imaginary roots are
expanded with (K,s + K3) terms in the numerator rather than just simply K, as in
the case of real roots. The K;’s in Eq. (2.42) are found through balancing the
coefficients of the equation after clearing fractions. After completing the squares on
(s> + as + b) and adjusting the numerator, (Kas + K3)/(s*> + as + b) can be put into
the form shown on the right-hand side of Eq. (2.36).

Finally, the case of purely imaginary roots arises if a = 0 in Eq. (2.42). The
calculations are the same.

Another method that follows the technique used for the partial-fraction
expansion of F(s) with real roots in the denominator can be used for complex
and imaginary roots. However, the residues of the complex and imaginary roots are
themselves complex conjugates. Then, after taking the inverse Laplace transform,
the resulting terms can be identified as

e+ 2.43)
———— = cos .
| Apago PDF Enhancef
" S ino 2.44
5 T sin (2.44)
For example, the previous F(s) can also be expanded in partial fractions as
3 3
F(s) = =
O = 7559 T TR
Ky K K;
=— 2.45
s Tst1i2 stl-p2 (245)
Finding K>,
3 3
Ky—=——" =——(24j1 2.46
2 sG+1-2) p 20( ) (2.46)

Similarly, K3 is found to be the complex conjugate of K,, and K; is found as
previously described. Hence,

35 3 2471 2-j1
Fls) == 20<s+1+j2+s+1—j2 (247)

from which

[(2 + eI 4 (2 — ,'1)e*<1*f2>t]

&2 4 o2 &2 1 o2
—t - = - =
e [4< . )+z( 2]_ )] (2.48)

8lw Sfw

Trylt 2.5

Use the following MATLAB

statements to help you get

Eq. (2.47).

numf =3

denf=[1 2 5 0]

[k,p,kl=residue...
(numf, denf)
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Using Egs. (2.43) and (2.44), we get

ft) = % - %e" (cos 2t + %sin 2t> = 0.6 — 0.671e ‘cos(2t — ¢) (2.49)

where ¢ = arctan 0.5 = 26.57°.

symbolic Math Students who are performing the MATLAB exercises and want to

m explore the added capability of MATLAB's Symbolic Math Toolbox
should now run ch2spl and ch2sp2 in Appendix F at www.wiley.com/
college/nise. Youwill learnhow to construct symbolicobjects and
then find the inverse Laplace and Laplace transforms of frequency
and time functions, respectively. The examples in Case 2 and Case 3
in this sectionwill be solved using the Symbolic Math Toolbox.

@Y skill-Assessment Exercise 2.1 —

PROBLEM: Find the Laplace transform of f(¢) = te™".

ANSWER: F(s) =1/(s +5)*

The complete solution is at www.wiley.com/college/nise.

@ sill-Assessment Exercise 2.2 JEG—
uvu elllICALIIV W1

PROBLEM: Find the inverse Laplace transform of F(s) = 10/[s(s +2)(s + 3)*].

. 5 o 10 40
WileyPLUS ANSWER:  7(y) = 9 Se* +5te = 5¢ -
L WPCs J
Control Solutions The complete solution is at www.wiley.com/college/nise.

@ 2.3 The Transfer Function

In the previous section we defined the Laplace transform and its inverse. We presented
the idea of the partial-fraction expansion and applied the concepts to the solution of
differential equations. We are now ready to formulate the system representation
shown in Figure 2.1 by establishing a viable definition for a function that algebraically
relates a system’s output to its input. This function will allow separation of the input,
system, and output into three separate and distinct parts, unlike the differential
equation. The function will also allow us to algebraically combine mathematical
representations of subsystems to yield a total system representation.

Let us begin by writing a general nth-order, linear, time-invariant differential

equation,
d"c(t) d"te(r) o, d'r() d"r(t)
an ar an—lw+"-+aoc(l)—bm T +bm—1w+'“+bor(t)

(2.50)
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