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in Figure 2.1(b), where a mathematical function, called a transfer function, is inside
each block, and block functions can easily be combined to yield Figure 2.1 (a) for
ease of analysis and design. This convenience cannot be obtained with the
differential equation.

2.2 Laplace Transform Review

A system represented by a differential equation is difficult to model as a block
diagram. Thus, we now lay the groundwork for the Laplace transform, with which we
can represent the input, output, and system as separate entities. Further, their
interrelationship will be simply algebraic. Let us first define the Laplace transform
and then show how it simplifies the representation of physical systems (Nilsson, 1996).

The Laplace transform is defined as

L½ f ðtÞ� ¼ FðsÞ ¼
Z 1

0�
f ðtÞe�st dt ð2:1Þ

where s ¼ s þ jv, a complex variable. Thus, knowing f(t) and that the integral in Eq. (2.1)
exists, we can find a function, F(s), that is called the Laplace transform of f(t).1

The notation for the lower limit means that even if f(t) is discontinuous at t ¼ 0,
we can start the integration prior to the discontinuity as long as the integral
converges. Thus, we can find the Laplace transform of impulse functions. This
property has distinct advantages when applying the Laplace transform to the
solution of differential equations where the initial conditions are discontinuous
at t ¼ 0. Using differential equations, we have to solve for the initial conditions after
the discontinuity knowing the initial conditions before the discontinuity. Using the
Laplace transform we need only know the initial conditions before the discontinuity.
See Kailath (1980) for a more detailed discussion.

The inverse Laplace transform, which allows us to find f(t) given F(s), is

L�1½FðsÞ� ¼ 1

2pj

Z sþj1

s�j1
FðsÞestds ¼ f ðtÞuðtÞ ð2:2Þ

where
uðtÞ ¼ 1 t > 0

¼ 0 t < 0

is the unit step function. Multiplication of f(t) by u(t) yields a time function that is
zero for t < 0.

Using Eq. (2.1), it is possible to derive a table relating f(t) to F(s) for specific
cases. Table 2.1 shows the results for a representative sample of functions. If we use
the tables, we do not have to use Eq. (2.2), which requires complex integration, to
find f(t) given F(s).

1 The Laplace transform exists if the integral of Eq. (2.1) converges. The integral will converge ifR1
0� jf ðtÞje�s1 t dt < 1. If jf ðtÞj < Mes2t; 0 < t < 1, the integral will converge if 1 > s1 > s2. We call s2

the abscissa of convergence, and it is the smallest value of s, where s ¼ s þ jv, for which the integral exists.
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In the following example we demonstrate the use of Eq. (2.1) to find the
Laplace transform of a time function.

Example 2.1

Laplace Transform of a Time Function

PROBLEM: Find the Laplace transform of f ðtÞ ¼ Ae�atuðtÞ.
SOLUTION: Since the time function does not contain an impulse function, we can
replace the lower limit of Eq. (2.1) with 0. Hence,

FðsÞ ¼
Z 1

0
f ðtÞe�st dt ¼

Z 1

0
Ae�ate�st dt ¼ A

Z 1

0
e�ðsþaÞt dt

¼ � A

sþ a
e�ðsþaÞt

����
1

t¼0

¼ A

sþ a
ð2:3Þ

In addition to the Laplace transform table, Table 2.1, we can use Laplace
transform theorems, listed in Table 2.2, to assist in transforming between f(t) and
F(s). In the next example, we demonstrate the use of the Laplace transform
theorems shown in Table 2.2 to find f(t) given F(s).

Example 2.2

Inverse Laplace Transform

PROBLEM: Find the inverse Laplace transform of F1ðsÞ ¼ 1=ðsþ 3Þ2.

SOLUTION: For this example we make use of the frequency shift theorem, Item 4
of Table 2.2, and the Laplace transform of f ðtÞ ¼ tuðtÞ, Item 3 of Table 2.1. If the
inverse transform of FðsÞ ¼ 1=s2 is tu(t), the inverse transform of Fðsþ aÞ ¼
1=ðsþ aÞ2 is e�attuðtÞ. Hence, f 1ðtÞ ¼ e�3ttuðtÞ.

TABLE 2.1 Laplace transform table

Item no. f(t) F(s)

1. d(t) 1

2. u(t)
1

s

3. tu(t) 1

s2

4. tnuðtÞ n!

sn þ 1

5. e�atuðtÞ 1

sþ a

6. sinvtuðtÞ v

s2 þ v2

7. cosvtuðtÞ s

s2 þ v2
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Partial-Fraction Expansion
To find the inverse Laplace transform of a complicated function, we can convert the
function to a sum of simpler terms for which we know the Laplace transform of each
term. The result is called a partial-fraction expansion. If F1ðsÞ ¼ NðsÞ=DðsÞ, where
the order of N(s) is less than the order of D(s), then a partial-fraction expansion can
be made. If the order of N(s) is greater than or equal to the order of D(s), then N(s)
must be divided by D(s) successively until the result has a remainder whose
numerator is of order less than its denominator. For example, if

F1ðsÞ ¼ s3 þ 2s2 þ 6sþ 7

s2 þ sþ 5
ð2:4Þ

we must perform the indicated division until we obtain a remainder whose numera-
tor is of order less than its denominator. Hence,

F1ðsÞ ¼ sþ 1 þ 2

s2 þ sþ 5
ð2:5Þ

Taking the inverse Laplace transform, using Item 1 of Table 2.1, along with the
differentiation theorem (Item 7) and the linearity theorem (Item 3 of Table 2.2), we obtain

f 1ðtÞ ¼
ddðtÞ
dt

þ dðtÞ þL�1 2

s2 þ sþ 5

� �
ð2:6Þ

Using partial-fraction expansion, we will be able to expand functions like FðsÞ ¼
2=ðs2 þ sþ 5Þ into a sum of terms and then find the inverse Laplace transform for
each term. We will now consider three cases and show for each case how anF(s) can be
expanded into partial fractions.

TABLE 2.2 Laplace transform theorems

Item no. Theorem Name

1. L½ f ðtÞ� ¼ FðsÞ ¼ R10� f ðtÞe�stdt Definition

2. L½kf ðtÞ� ¼ kFðsÞ Linearity theorem

3. L½ f 1ðtÞ þ f 2ðtÞ� ¼ F1ðsÞ þ F2ðsÞ Linearity theorem

4. L½e�atf ðtÞ� ¼ Fðsþ aÞ Frequency shift theorem

5. L½ f ðt � TÞ� ¼ e�sTFðsÞ Time shift theorem

6. L½ f ðatÞ� ¼ 1

a
F

s

a

� �
Scaling theorem

7. L
df

dt

� �
¼ sFðsÞ � f ð0�Þ Differentiation theorem

8. L
d2f

dt2

" #
¼ s2FðsÞ � sf ð0�Þ � f 0ð0�Þ Differentiation theorem

9. L
dnf

dtn

� �
¼ snFðsÞ �

Xn
k¼1

sn�kf k�1ð0�Þ Differentiation theorem

10. L
R t

0� f ðtÞdt� � ¼ FðsÞ
s

Integration theorem

11. f ð1Þ ¼ lim
s!0

sFðsÞ Final value theorem1

12. f ð0þÞ ¼ lim
s!1 sFðsÞ Initial value theorem2

1For this theorem to yield correct finite results, all roots of the denominator ofF(s) must have negative real
parts, and no more than one can be at the origin.
2For this theorem to be valid, f(t) must be continuous or have a step discontinuity at t ¼ 0 (that is, no
impulses or their derivatives at t ¼ 0).
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Case 1. Roots of the Denominator of F(s) Are Real and Distinct An example of an
F(s) with real and distinct roots in the denominator is

FðsÞ ¼ 2

ðsþ 1Þðsþ 2Þ ð2:7Þ

The roots of the denominator are distinct, since each factor is raised only to unity
power. We can write the partial-fraction expansion as a sum of terms where each
factor of the original denominator forms the denominator of each term, and
constants, called residues, form the numerators. Hence,

FðsÞ ¼ 2

ðsþ 1Þðsþ 2Þ ¼
K1

ðsþ 1Þ þ
K2

ðsþ 2Þ ð2:8Þ

To find K1, we first multiply Eq. (2.8) by ðsþ 1Þ, which isolates K1. Thus,

2

ðsþ 2Þ ¼ K1 þ ðsþ 1ÞK2

ðsþ 2Þ ð2:9Þ

Letting s approach �1 eliminates the last term and yields K1 ¼ 2. Similarly, K2 can be
found by multiplying Eq. (2.8) by ðsþ 2Þ and then letting sapproach�2; hence,K2 ¼ �2.

Each component part of Eq. (2.8) is an F(s) in Table 2.1. Hence, f(t) is the sum
of the inverse Laplace transform of each term, or

f ðtÞ ¼ ð2e�t � 2e�2tÞuðtÞ ð2:10Þ
In general, then, given an F(s) whose denominator has real and distinct roots, a

partial-fraction expansion,

FðsÞ ¼ NðsÞ
DðsÞ ¼

NðsÞ
ðsþ p1Þðsþ p2Þ � � � ðsþ pmÞ � � � ðsþ pnÞ

¼ K1

ðsþ p1Þ
þ K2

ðsþ p2Þ
þ � � � þ Km

ðsþ pmÞ
þ � � � þ Kn

ðsþ pnÞ
ð2:11Þ

can be made if the order of N(s) is less than the order of D(s). To evaluate each
residue, Ki, we multiply Eq. (2.11) by the denominator of the corresponding partial
fraction. Thus, if we want to find Km, we multiply Eq. (2.11) by ðsþ pmÞ and get

ðsþ pmÞFðsÞ ¼
ðsþ pmÞNðsÞ

ðsþ p1Þðsþ p2Þ � � � ðsþ pmÞ � � � ðsþ pnÞ

¼ ðsþ pmÞ
K1

ðsþ p1Þ
þ ðsþ pmÞ

K2

ðsþ p2Þ
þ � � � þKm þ � � �

þ ðsþ pmÞ
Kn

ðsþ pnÞ ð2:12Þ

If we let s approach �pm, all terms on the right-hand side of Eq. (2.12) go to zero
except the term Km, leaving

ðsþ pmÞNðsÞ
ðsþ p1Þðsþ p2Þ � � � ðsþ pmÞ � � � ðsþ pnÞ

����
s!�pm

¼ Km ð2:13Þ

The following example demonstrates the use of the partial-fraction expansion
to solve a differential equation. We will see that the Laplace transform reduces the
task of finding the solution to simple algebra.

38 Chapter 2 Modeling in the Frequency Domain



Apago PDF Enhancer

E1C02 11/03/2010 11:29:19 Page 39

Example 2.3

Laplace Transform Solution of a Differential Equation

PROBLEM: Given the following differential equation, solve for y(t) if all initial
conditions are zero. Use the Laplace transform.

d2y

dt2
þ 12

dy

dt
þ 32y ¼ 32uðtÞ ð2:14Þ

SOLUTION: Substitute the corresponding F(s) for each term in Eq. (2.14), using
Item 2 in Table 2.1, Items 7 and 8 in Table 2.2, and the initial conditions of y(t) and
dy(t)=dt given by yð0�Þ ¼ 0 and _yð0�Þ ¼ 0, respectively. Hence, the Laplace
transform of Eq. (2.14) is

s2YðsÞ þ 12sYðsÞ þ 32YðsÞ ¼ 32

s
ð2:15Þ

Solving for the response, Y(s), yields

YðsÞ ¼ 32

sðs2 þ 12sþ 32Þ ¼
32

sðsþ 4Þðsþ 8Þ ð2:16Þ

To solve for y(t), we notice that Eq. (2.16) does not match any of the terms in Table
2.1. Thus, we form the partial-fraction expansion of the right-hand term and match
each of the resulting terms with F(s) in Table 2.1. Therefore,

YðsÞ ¼ 32

sðsþ 4Þðsþ 8Þ ¼
K1

s
þ K2

ðsþ 4Þ þ
K3

ðsþ 8Þ ð2:17Þ

where, from Eq. (2.13),

K1 ¼ 32

ðsþ 4Þðsþ 8Þ
����
s!0

¼ 1 ð2:18aÞ

K2 ¼ 32

sðsþ 8Þ
����
s!�4

¼ �2 ð2:18bÞ

K3 ¼ 32

sðsþ 4Þ
����
s!�8

¼ 1 ð2:18cÞ

Hence,

YðsÞ ¼ 1

s
� 2

ðsþ 4Þ þ
1

ðsþ 8Þ ð2:19Þ

Since each of the three component parts of Eq. (2.19) is represented as an
F(s) in Table 2.1, y(t) is the sum of the inverse Laplace transforms of each term.
Hence,

yðtÞ ¼ ð1 � 2e�4t þ e�8tÞuðtÞ ð2:20Þ
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StudentswhoareusingMATLABshouldnowrunch2p1throughch2p8
in Appendix B. This is your first MATLAB exercise. You will learn how
to use MATLAB to (1) represent polynomials, (2) find roots of poly-
nomials, (3) multiply polynomials, and (4) find partial-fraction
expansions. Finally, Example 2.3 will be solved using MATLAB.

The u(t) in Eq. (2.20) shows that the response is zero until t ¼ 0. Unless
otherwise specified, all inputs to systems in the text will not start until t ¼ 0. Thus,
output responses will also be zero until t ¼ 0. For convenience, we will leave off the
u(t) notation from now on. Accordingly, we write the output response as

yðtÞ ¼ 1 � 2e�4t þ e�8t ð2:21Þ

Case 2. Roots of the Denominator of F(s) Are Real and Repeated An example of
an F(s) with real and repeated roots in the denominator is

FðsÞ ¼ 2

ðsþ 1Þðsþ 2Þ2
ð2:22Þ

The roots of ðsþ 2Þ2 in the denominator are repeated, since the factor is raised to an
integer power higher than 1. In this case, the denominator root at �2 is a multiple
root of multiplicity 2.

We can write the partial-fraction expansion as a sum of terms, where each
factor of the denominator forms the denominator of each term. In addition, each
multiple root generates additional terms consisting of denominator factors of
reduced multiplicity. For example, if

FðsÞ ¼ 2

ðsþ 1Þðsþ 2Þ2
¼ K1

ðsþ 1Þ þ
K2

ðsþ 2Þ2
þ K3

ðsþ 2Þ ð2:23Þ

then K1 ¼ 2, which can be found as previously described. K2 can be isolated by
multiplying Eq. (2.23) by ðsþ 2Þ2, yielding

2

sþ 1
¼ ðsþ 2Þ2 K1

ðsþ 1Þ þK2 þ ðsþ 2ÞK3 ð2:24Þ

Letting s approach �2; K2 ¼ �2. To find K3 we see that if we differentiate Eq. (2.24)
with respect to s,

�2

ðsþ 1Þ2
¼ ðsþ 2Þs

ðsþ 1Þ2
K1 þK3 ð2:25Þ

K3 is isolated and can be found if we let s approach �2. Hence, K3 ¼ �2.
Each component part of Eq. (2.23) is an F(s) in Table 2.1; hence, f(t) is the sum

of the inverse Laplace transform of each term, or

f ðtÞ ¼ 2e�t � 2te�2t � 2e�2t ð2:26Þ

If the denominator root is of higher multiplicity than 2, successive differentiation
would isolate each residue in the expansion of the multiple root.

TryIt 2.1

Use the following MATLAB
and Control System Toolbox
statement to form the linear,
time-invariant (LTI) transfer
function of Eq. (2.22).

F=zpk([], [�1 �2 �2],2)

TryIt 2.2

Use the following MATLAB
statements to help you get
Eq. (2.26).

numf=2;
denf=poly([�1 �2 �2]);
[k,p,k]=residue...
(numf,denf)
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In general, then, given an F(s) whose denominator has real and repeated roots,
a partial-fraction expansion,

FðsÞ ¼ NðsÞ
DðsÞ

¼ NðsÞ
ðsþ p1Þrðsþ p2Þ � � � ðsþ pnÞ

¼ K1

ðsþ p1Þr
þ K2

ðsþ p1Þr�1
þ � � � þ Kr

ðsþ p1Þ

þ Krþ1

ðsþ p2Þ
þ � � � þ Kn

ðsþ pnÞ ð2:27Þ

can be made if the order of N(s) is less than the order of D(s) and the repeated roots
are of multiplicity r at �p1. To find K1 through Kr for the roots of multiplicity greater
than unity, first multiply Eq. (2.27) by ðsþ p1Þr getting F1ðsÞ, which is

F1ðsÞ ¼ ðsþ p1ÞrFðsÞ

¼ ðsþ p1ÞrNðsÞ
ðsþ p1Þrðsþ p2Þ � � � ðsþ pnÞ

¼ K1 þ ðsþ p1ÞK2 þ ðsþ p1Þ2K3 þ � � � þ ðsþ p1Þr�1Kr

þKrþ1ðsþ p1Þr
ðsþ p2Þ

þ � � � þKnðsþ p1Þr
ðsþ pnÞ ð2:28Þ

Immediately, we can solve for K1 if we let s approach �p1. We can solve for K2 if we
differentiate Eq. (2.28) with respect to s and then let s approach �p1. Subsequent
differentiation will allow us to find K3 through Kr. The general expression for K1

through Kr for the multiple roots is

Ki ¼ 1

ði� 1Þ!
di�1F1ðsÞ
dsi�1

����
s!�p1

i ¼ 1; 2; . . . ; r; 0! ¼ 1 ð2:29Þ

Case 3. Roots of the Denominator of F(s) Are Complex or Imaginary An example
of F(s) with complex roots in the denominator is

FðsÞ ¼ 3

sðs2 þ 2sþ 5Þ ð2:30Þ

This function can be expanded in the following form:

3

sðs2 þ 2sþ 5Þ ¼
K1

s
þ K2sþK3

s2 þ 2sþ 5
ð2:31Þ

K1 is found in the usual way to be 3
5. K2 and K3 can be found by first multiplying

Eq. (2.31) by the lowest common denominator, sðs2 þ 2sþ 5Þ, and clearing the
fractions. After simplification with K1 ¼ 3

5, we obtain

3 ¼ K2 þ 3

5

	 

s2 þ K3 þ 6

5

	 

sþ 3 ð2:32Þ

TryIt 2.3

Use the following MATLAB
and Control System Toolbox
statement to form the LTI
transfer function of Eq. (2.30).

F=tf([3],[1 2 5 0])
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Balancing coefficients, K2 þ 3
5

� � ¼ 0 and K3 þ 6
5

� � ¼ 0. Hence K2 ¼ � 3
5 and K3 ¼

� 6
5. Thus,

FðsÞ ¼ 3

sðs2 þ 2sþ 5Þ ¼
3=5

s
� 3

5

sþ 2

s2 þ 2sþ 5
ð2:33Þ

The last term can be shown to be the sum of the Laplace transforms of an
exponentially damped sine and cosine. Using Item 7 in Table 2.1 and Items 2 and 4 in
Table 2.2, we get

L½Ae�atcos vt� ¼ Aðsþ aÞ
ðsþ aÞ2 þ v2

ð2:34Þ

Similarly,

L½Be�atsinvt� ¼ Bv

ðsþ aÞ2 þ v2
ð2:35Þ

Adding Eqs. (2.34) and (2.35), we get

L½Ae�atcos vt þ Be�atsinvt� ¼ Aðsþ aÞ þ Bv

ðsþ aÞ2 þ v2
ð2:36Þ

We now convert the last term of Eq. (2.33) to the form suggested by Eq. (2.36)
by completing the squares in the denominator and adjusting terms in the numerator
without changing its value. Hence,

FðsÞ ¼ 3=5

s
� 3

5

ðsþ 1Þ þ ð1=2Þð2Þ
ðsþ 1Þ2 þ 22

ð2:37Þ

Comparing Eq. (2.37) to Table 2.1 and Eq. (2.36), we find

f ðtÞ ¼ 3

5
� 3

5
e�t cos 2t þ 1

2
sin 2t

	 

ð2:38Þ

In order to visualize the solution, an alternate form of f(t), obtained by
trigonometric identities, is preferable. Using the amplitudes of the cos and sin

terms, we factor out
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ ð1=2Þ2

q
from the term in parentheses and obtain

f ðtÞ ¼ 3

5
� 3

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ ð1=2Þ2

q
e�t 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 þ ð1=2Þ2
q cos 2t þ 1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 þ ð1=2Þ2
q sin 2t

0
B@

1
CA ð2:39Þ

Letting 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ ð1=2Þ2

q
¼ cos f and ð1=2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ ð1=2Þ2

q
¼ sinf,

f ðtÞ ¼ 3

5
� 3

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ ð1=2Þ2

q
e�tðcos f cos 2t þ sin f sin 2tÞ ð2:40Þ

or

f ðtÞ ¼ 0:6 � 0:671e�tcosð2t � fÞ ð2:41Þ

TryIt 2.4

Use the following MATLAB
and Symbolic Math Toolbox
statements to get Eq. (2.38)
from Eq. (2.30).

syms s
f=ilaplace...
(3/(s*(s^2+2 *s+5)));

pretty(f)
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where f ¼ arctan 0:5 ¼ 26:57�. Thus, f(t) is a constant plus an exponentially damped
sinusoid.

In general, then, given an F(s) whose denominator has complex or purely
imaginary roots, a partial-fraction expansion,

FðsÞ ¼ NðsÞ
DðsÞ ¼

NðsÞ
ðsþ p1Þðs2 þ asþ bÞ � � �

¼ K1

ðsþ p1Þ
þ ðK2sþK3Þ
ðs2 þ asþ bÞ þ � � � ð2:42Þ

can be made if the order of N(s) is less than the order of D(s) p1 is real, and ðs2 þ
asþ bÞ has complex or purely imaginary roots. The complex or imaginary roots are
expanded with ðK2sþK3Þ terms in the numerator rather than just simply Ki, as in
the case of real roots. The Ki’s in Eq. (2.42) are found through balancing the
coefficients of the equation after clearing fractions. After completing the squares on
ðs2 þ asþ bÞ and adjusting the numerator, ðK2sþK3Þ=ðs2 þ asþ bÞ can be put into
the form shown on the right-hand side of Eq. (2.36).

Finally, the case of purely imaginary roots arises if a ¼ 0 in Eq. (2.42). The
calculations are the same.

Another method that follows the technique used for the partial-fraction
expansion of F(s) with real roots in the denominator can be used for complex
and imaginary roots. However, the residues of the complex and imaginary roots are
themselves complex conjugates. Then, after taking the inverse Laplace transform,
the resulting terms can be identified as

eju þ e�ju

2
¼ cos u ð2:43Þ

and
eju � e�ju

2j
¼ sin u ð2:44Þ

For example, the previous F(s) can also be expanded in partial fractions as

FðsÞ ¼ 3

sðs2 þ 2sþ 5Þ ¼
3

sðsþ 1 þ j2Þðsþ 1 � j2Þ

¼ K1

s
þ K2

sþ 1 þ j2
þ K3

sþ 1 � j2
ð2:45Þ

Finding K2,

K2 ¼ 3

sðsþ 1 � j2Þ
����
s!�1�j2

¼ � 3

20
ð2 þ j1Þ ð2:46Þ

Similarly, K3 is found to be the complex conjugate of K2, and K1 is found as
previously described. Hence,

FðsÞ ¼ 3=5

s
� 3

20

2 þ j1

sþ 1 þ j2
þ 2 � j1

sþ 1 � j2

	 

ð2:47Þ

from which

f ðtÞ ¼ 3

5
� 3

20
ð2 þ j1Þe�ð1þj2Þt þ ð2 � j1Þe�ð1�j2Þt
h i

¼ 3

5
� 3

20
e�t 4

ej2t þ e�j2t

2

	 

þ 2

ej2t þ e�j2t

2j

	 
� �
ð2:48Þ

TryIt 2.5

Use the following MATLAB
statements to help you get
Eq. (2.47).

numf=3
denf= [1 2 5 0]
[k,p,k]=residue...
(numf,denf)
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Using Eqs. (2.43) and (2.44), we get

f ðtÞ ¼ 3

5
� 3

5
e�t cos 2t þ 1

2
sin 2t

	 

¼ 0:6 � 0:671e�tcosð2t � fÞ ð2:49Þ

where f ¼ arctan 0:5 ¼ 26:57�.

Students who are performing the MATLAB exercises and want to
explore the added capability of MATLAB’s Symbolic Math Toolbox
should now run ch2sp1 and ch2sp2 in Appendix F at www.wiley.com/
college/nise. You will learn how to construct symbolic objects and
then find the inverse Laplace and Laplace transforms of frequency
and time functions, respectively. The examples in Case 2 and Case 3
in this section will be solved using the Symbolic Math Toolbox.

Skill-Assessment Exercise 2.1

PROBLEM: Find the Laplace transform of f ðtÞ ¼ te�5t.

ANSWER: FðsÞ ¼ 1=ðsþ 5Þ2

The complete solution is at www.wiley.com/college/nise.

Skill-Assessment Exercise 2.2

PROBLEM: Find the inverse Laplace transform of FðsÞ ¼ 10=½sðsþ 2Þðsþ 3Þ2�.

ANSWER: f ðtÞ ¼ 5

9
� 5e�2t þ 10

3
te�3t þ 40

9
e�3t

The complete solution is at www.wiley.com/college/nise.

2.3 The Transfer Function

In the previous section we defined the Laplace transform and its inverse. We presented
the idea of the partial-fraction expansion and applied the concepts to the solution of
differential equations. We are now ready to formulate the system representation
shown in Figure 2.1 by establishing a viable definition for a function that algebraically
relates a system’s output to its input. This function will allow separation of the input,
system, and output into three separate and distinct parts, unlike the differential
equation. The function will also allow us to algebraically combine mathematical
representations of subsystems to yield a total system representation.

Let us begin by writing a general nth-order, linear, time-invariant differential
equation,

an
dncðtÞ
dtn

þ an�1
dn�1cðtÞ
dtn�1

þ � � � þ a0cðtÞ ¼ bm
dmrðtÞ
dtm

þ bm�1
dm�1rðtÞ
dtm�1

þ � � � þ b0rðtÞ
ð2:50Þ
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