4.3 First-Order Systems

We now discuss first-order systems without zeros to define a performance specification for such a system. A first-order system without zeros can be described by the transfer function shown in Figure 4.4(a). If the input is a unit step, where \(R(s) = 1/s \), the Laplace transform of the step response is \(C(s) \), where

\[
C(s) = R(s)G(s) = \frac{a}{s(s + a)} \quad (4.5)
\]

Taking the inverse transform, the step response is given by

\[
c(t) = c_f(t) + c_n(t) = 1 - e^{-at} \quad (4.6)
\]

where the input pole at the origin generated the forced response \(c_f(t) = 1 \), and the system pole at \(-a\), as shown in Figure 4.4(b), generated the natural response \(c_n(t) = -e^{-at} \). Equation (4.6) is plotted in Figure 4.5.

Let us examine the significance of parameter \(a \), the only parameter needed to describe the transient response. When \(t = 1/a \),

\[
e^{-at}\big|_{t=1/a} = e^{-1} = 0.37 \quad (4.7)
\]

or

\[
c(t)\big|_{t=1/a} = 1 - e^{-at}\big|_{t=1/a} = 1 - 0.37 = 0.63 \quad (4.8)
\]

We now use Eqs. (4.6), (4.7), and (4.8) to define three transient response performance specifications.

Time Constant

We call \(1/a \) the *time constant* of the response. From Eq. (4.7), the time constant can be described as the time for \(e^{-at} \) to decay to 37% of its initial value. Alternately, from Eq. (4.8) the time constant is the time it takes for the step response to rise to 63% of its final value (see Figure 4.5).
The reciprocal of the time constant has the units (1/seconds), or frequency. Thus, we can call the parameter a the **exponential frequency**. Since the derivative of e^{-at} is $-a$ when $t = 0$, a is the initial rate of change of the exponential at $t = 0$. Thus, the time constant can be considered a transient response specification for a first-order system, since it is related to the speed at which the system responds to a step input.

The time constant can also be evaluated from the pole plot (see Figure 4.4(b)). Since the pole of the transfer function is at $-a$, we can say the pole is located at the **reciprocal** of the time constant, and the farther the pole from the imaginary axis, the faster the transient response.

Let us look at other transient response specifications, such as rise time, T_r, and settling time, T_s, as shown in Figure 4.5.

Rise Time, T_r

Rise time is defined as the time for the waveform to go from 0.1 to 0.9 of its final value. Rise time is found by solving Eq. (4.6) for the difference in time at $c(t) = 0.9$ and $c(t) = 0.1$. Hence,

$$T_r = \frac{2.31}{a} - \frac{0.11}{a} = \frac{2.2}{a}$$ \hspace{1cm} (4.9)

Settling Time, T_s

Settling time is defined as the time for the response to reach, and stay within, 2% of its final value.\(^2\) Letting $c(t) = 0.98$ in Eq. (4.6) and solving for time, t, we find the settling time to be

$$T_s = \frac{4}{a}$$ \hspace{1cm} (4.10)

First-Order Transfer Functions via Testing

Often it is not possible or practical to obtain a system’s transfer function analytically. Perhaps the system is closed, and the component parts are not easily identifiable. Since the transfer function is a representation of the system from input to output, the system’s step response can lead to a representation even though the inner construction is not known. With a step input, we can measure the time constant and the steady-state value, from which the transfer function can be calculated.

Consider a simple first-order system, $G(s) = \frac{K}{s + a}$, whose step response is

$$C(s) = \frac{K}{s(s + a)} = \frac{K/a}{s} - \frac{K/a}{s + a}$$ \hspace{1cm} (4.11)

If we can identify K and a from laboratory testing, we can obtain the transfer function of the system.

For example, assume the unit step response given in Figure 4.6. We determine that it has the first-order characteristics we have seen thus far, such as no overshoot and nonzero initial slope. From the response, we measure the time constant, that is, the time for the amplitude to reach 63% of its final value. Since the final value is

\(^2\)Strictly speaking, this is the definition of the 2% *settling time*. Other percentages, for example 5%, also can be used. We will use *settling time* throughout the book to mean 2% settling time.
about 0.72, the time constant is evaluated where the curve reaches $0.63 \times 0.72 = 0.45$, or about 0.13 second. Hence, $a = 1/0.13 = 7.7$.

To find K, we realize from Eq. (4.11) that the forced response reaches a steady-state value of $K/a = 0.72$. Substituting the value of a, we find $K = 5.54$. Thus, the transfer function for the system is $G(s) = 5.54/(s + 7.7)$. It is interesting to note that the response of Figure 4.6 was generated using the transfer function $G(s) = 5/(s + 7)$.

Skill-Assessment Exercise 4.2

Problem: A system has a transfer function, $G(s) = \frac{50}{s + 50}$. Find the time constant, T_c, settling time, T_s, and rise time, T_r.

Answer: $T_c = 0.02$ s, $T_r = 0.08$ s, and $T_r = 0.044$ s.

The complete solution is located at www.wiley.com/college/nise.

4.4 Second-Order Systems: Introduction

Let us now extend the concepts of poles and zeros and transient response to second-order systems. Compared to the simplicity of a first-order system, a second-order system exhibits a wide range of responses that must be analyzed and described. Whereas varying a first-order system’s parameter simply changes the speed of the response, changes in the parameters of a second-order system can change the form of the response. For example, a second-order system can display characteristics much