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for stability. You will also be able to find percent overshoot, settling time, peak time,
and rise time, given K.

10.1 Introduction

The root locus method for transient design, steady-state design, and stability was
covered in Chapters 8 and 9. In Chapter 8, we covered the simple case of design
through gain adjustment, where a trade-off was made between a desired transient
response and a desired steady-state error. In Chapter 9, the need for this trade-off
was eliminated by using compensation networks so that transient and steady-state
errors could be separately specified and designed. Further, a desired transient
response no longer had to be on the original system’s root locus.

This chapter and Chapter 11 present the design of feedback control systems
through gain adjustment and compensation networks from another perspective—
that of frequency response. The results of frequency response compensation tech-
niques are not new or different from the results of root locus techniques.

Frequency response methods, developed by Nyquist and Bode in the 1930s, are
older than the root locus method, which was discovered by Evans in 1948 (Nyquist,
1932; Bode, 1945). The older method, which is covered in this chapter, is not as
intuitive as the root locus. However, frequency response yields a new vantage point
from which to view feedback control systems. This technique has distinct advantages
in the following situations:

1. When modeling transfer functions from physical data, as shown in Figure 10.1

2. When designing lead compensators to meet a steady-state error requirement and
a transient response requirement

3. When finding the stability of nonlinear systems

4. In settling ambiguities when sketching a root locus

FIGURE 10.1 National
Instruments PXI, Compact
RIO, Compact DAQ, and USB
hardware plantforms (shown
from left to right) couple with
NI LabVIEW software to
provide stimulus and acquire
signals from physical systems.
NI LabVIEW can then be used
to analyze data, determine the
mathematical model, and
prototype and deploy a
controller for the
physical system (Courtesy National
Instruments # 2010).
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We first discuss the concept of frequency response, define frequency response,
derive analytical expressions for the frequency response, plot the frequency re-
sponse, develop ways of sketching the frequency response, and then apply the
concept to control system analysis and design.

The Concept of Frequency Response
In the steady state, sinusoidal inputs to a linear system generate sinusoidal responses
of the same frequency. Even though these responses are of the same frequency as the
input, they differ in amplitude and phase angle from the input. These differences are
functions of frequency.

Before defining frequency response, let us look at a convenient representation
of sinusoids. Sinusoids can be represented as complex numbers called phasors. The
magnitude of the complex number is the amplitude of the sinusoid, and the angle of
the complex number is the phase angle of the sinusoid. Thus, M1 cos ðvt þ f1Þ can be
represented as M1—f1 where the frequency, v, is implicit.

Since a system causes both the amplitude and phase angle of the input to be
changed, we can think of the system itself as represented by a complex number,
defined so that the product of the input phasor and the system function yields the
phasor representation of the output.

Consider the mechanical system of Figure 10.2(a). If the input force, f(t), is
sinusoidal, the steady-state output response, x(t), of the system is also sinusoidal and at
the same frequency as the input. In Figure 10.2(b) the input and output sinusoids are
represented by complex numbers, or phasors,MiðvÞ—fiðvÞ and MoðvÞ—foðvÞ, respec-
tively. Here theM’s are the amplitudes of the sinusoids, and the f’s are the phase angles

f(t) = Mi cos(   t+   i)
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(  )

 Mass

Viscous damper

Spring

(a)

Input

t

x(t)

(c)

∠ 

ω φ

ωMi(  ) φ

φ

ωi(  )
∠ ωM(  ) φ ω

∠ Mo(  )

Mo = Mi M

f(t)

φ i

φo =
φ φ  i  +

φ

Mi

t

Output

(b)

ω

x (t) =Mo cos(ω +   o) 

FIGURE 10.2 Sinusoidal
frequency response: a. system;
b. transfer function; c. input and
output waveforms
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of the sinusoids as shown in Figure 10.2(c). Assume that the system is represented by the
complex number,MðvÞ—fðvÞ. The output steady-state sinusoid is found by multiplying
the complex number representation of the input by the complex number representation
of the system. Thus, the steady-state output sinusoid is

MoðvÞ—foðvÞ ¼ MiðvÞMðvÞ—½fiðvÞ þ fðvÞ� ð10:1Þ

From Eq. (10.1) we see that the system function is given by

MðvÞ ¼ MoðvÞ
MiðvÞ ð10:2Þ

and

fðvÞ ¼ foðvÞ � fiðvÞ ð10:3Þ

Equations (10.2) and (10.3) form our definition of frequency response. We call MðvÞ
the magnitude frequency response and fðvÞ the phase frequency response. The
combination of the magnitude and phase frequency responses is called the frequency
response and is MðvÞ—fðvÞ.

In other words, we define the magnitude frequency response to be the ratio of
the output sinusoid’s magnitude to the input sinusoid’s magnitude. We define the
phase response to be the difference in phase angle between the output and the input
sinusoids. Both responses are a function of frequency and apply only to the steady-
state sinusoidal response of the system.

Analytical Expressions for Frequency Response
Now that we have defined frequency response, let us obtain the analytical expression
for it (Nilsson, 1990). Later in the chapter, we will use this analytical expression to
determine stability, transient response, and steady-state error. Figure 10.3 shows a

system, G(s), with the Laplace transform of a general sinusoid, rðtÞ ¼ A cos vt þ
B sin vt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
cos ½vt � tan� 1ðB=AÞ� as the input. We can represent the input

as a phasor in three ways: (1) in polar form, Mi—fi, where Mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
and fi ¼ � tan� 1ðB=AÞ; (2) in rectangular form, A� jB; and (3) using Euler’s
formula, Miejfi .

We now solve for the forced response portion of C(s), from which we evaluate
the frequency response. From Figure 10.3,

CðsÞ ¼ Asþ Bv

ðs2 þ v2ÞGðsÞ ð10:4Þ

We separate the forced solution from the transient solution by performing a partial-
fraction expansion on Eq. (10.4). Thus,

CðsÞ ¼ Asþ Bv

ðsþ jvÞðs� jvÞGðsÞ

¼ K1

sþ jv
þ K2

s� jv
þ Partial fraction terms from GðsÞ

ð10:5Þ

ω
As + B
s2 +    2

G(s) 
C(s) R(s) = ω

FIGURE 10.3 System with
sinusoidal input
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where

K1 ¼ Asþ Bv

s� jv
GðsÞ

����
s!�jv

¼ 1

2
ðAþ jBÞGð�jvÞ ¼ 1

2
Mie

�jfiMGe
�jfG

¼ MiMG

2
e�jðfiþfGÞ

ð10:6aÞ

K2 ¼ Asþ Bv

sþ jv
GðsÞ

����
s!þjv

¼ 1

2
ðA� jBÞGðjvÞ ¼ 1

2
Mie

jfiMGe
jfG

¼ MiMG

2
ejðfiþfGÞ ¼ K�

1

ð10:6bÞ

For Eqs. (10.6), K�
1 is the complex conjugate of K1,

MG ¼ jGðjvÞj ð10:7Þ
and

fG ¼ angle of GðjvÞ ð10:8Þ
The steady-state response is that portion of the partial-fraction expansion that

comes from the input waveform’s poles, or just the first two terms of Eq. (10.5).
Hence, the sinusoidal steady-state output, Css(s), is

CssðsÞ ¼ K1

sþ jv
þ K2

s� jv
ð10:9Þ

Substituting Eqs. (10.6) into Eq. (10.9), we obtain

CssðsÞ ¼
MiMG

2
e�jðfiþfGÞ

sþ jv
þ
MiMG

2
ejðfiþfGÞ

s� jv
ð10:10Þ

Taking the inverse Laplace transformation, we obtain

cðtÞ ¼ MiMG
e�jðvtþfiþfGÞ þ ejðvtþfiþfGÞ

2

� �

¼ MiMG cos ðvt þ fi þ fGÞ
ð10:11Þ

which can be represented in phasor form as Mo—fo ¼ ðM1—f1ÞðMG—fGÞ, where
MG—fG is the frequency response function. But from Eqs. (10.7) and (10.8),
MG—fG ¼ GðjvÞ. In other words, the frequency response of a system whose transfer
function is G(s) is

Gð jvÞ ¼ GðsÞjs!jv ð10:12Þ

Plotting Frequency Response
GðjvÞ ¼ MGðvÞ < fGðvÞ can be plotted in several ways; two of them are (1) as a
function of frequency, with separate magnitude and phase plots; and (2) as a polar plot,
where the phasor length is the magnitude and the phasor angle is the phase. When
plotting separate magnitude and phase plots, the magnitude curve can be plotted in
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decibels (dB) vs. log v, where dB ¼ 20 log M.1 The phase curve is plotted as phase
angle vs. log v. The motivation for these plots is shown in Section 10.2.

Using the concepts covered in Section 8.1, data for the plots also can be
obtained using vectors on the s-plane drawn from the poles and zeros of G(s) to the
imaginary axis. Here the magnitude response at a particular frequency is the product
of the vector lengths from the zeros of G(s) divided by the product of the vector
lengths from the poles of G(s) drawn to points on the imaginary axis. The phase
response is the sum of the angles from the zeros of G(s) minus the sum of the angles
from the poles of G(s) drawn to points on the imaginary axis. Performing this
operation for successive points along the imaginary axis yields the data for the
frequency response. Remember, each point is equivalent to substituting that point,
s ¼ jv1, into G(s) and evaluating its value.

Theplotsalsocanbemadefromacomputerprogramthatcalculatesthefrequency
response. For example, the root locus program discussed in Appendix H at www.wiley.
com/college/nise can be used with test points that are on the imaginary axis. The
calculatedKvalue at each frequency is thereciprocal of the scaledmagnitude response,
and the calculated angle is, directly, the phase angle response at that frequency.

The following example demonstrates how to obtain an analytical expression
for frequency response and make a plot of the result.

Example 10.1

Frequency Response from The Transfer Function

PROBLEM: Find the analytical expression for the magnitude frequency response
and the phase frequency response for a system GðsÞ ¼ 1=ðsþ 2Þ. Also, plot both the
separate magnitude and phase diagrams and the polar plot.

1 Throughout this book, ‘‘log’’ is used to mean log10, or logarithm to the base 10.
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FIGURE 10.4 Frequency response plots for GðsÞ ¼ 1=ðsþ 2Þ: separate magnitude and phase
diagrams.
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SOLUTION: First substitute s ¼ jv in the system function and obtain
GðjvÞ ¼ 1=ðjvþ 2Þ ¼ ð2 � jvÞ=ðv2 þ 4Þ. The magnitude of this complex number,

jGðjvÞj ¼ MðvÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2 þ 4Þ

p
, is the magnitude frequency response. The phase

angle of GðjvÞ; fðvÞ ¼ �tan� 1ðv=2Þ, is the phase frequency response.
GðjvÞ can be plotted in two ways: (1) in separate magnitude and phase plots

and (2) in a polar plot. Figure 10.4 shows separate magnitude and phase diagrams,

where the magnitude diagram is 20 log MðvÞ ¼ 20 log ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4

p Þ vs. log v,
and the phase diagram is fðvÞ ¼ �tan� 1ðv=2Þ vs. log v. The polar plot, shown in

Figure 10.5, is a plot of MðvÞ < fðvÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4

p
< �tan� 1ðv=2Þ for different v.

In the previous example, we plotted the separate magnitude and phase re-
sponses, as well as the polar plot, using the mathematical expression for the frequency
response. Either of these frequency response presentations can also be obtained from
the other. You should practice this conversion by looking at Figure 10.4 and obtaining
Figure 10.5 using successive points. For example, at a frequency of 1 rad/s in Fig-
ure 10.4, the magnitude is approximately �7 dB, or 10�7=20 ¼ 0:447. The phase plot at
1 rad/s tells us that the phase is about �26�. Thus, on the polar plot a point of radius
0.447 at an angle of�26� is plotted and identified as 1 rad/s. Continuing in like manner
for other frequencies in Figure 10.4, you can obtain Figure 10.5.

Similarly, Figure 10.4 can be obtained from Figure 10.5 by selecting a sequence
of points in Figure 10.5 and translating them to separate magnitude and phase values.
For example, drawing a vector from the origin to the point at 2 rad/s in Figure 10.5,
we see that the magnitude is 20 log 0:35 ¼ �9:12 dB and the phase angle is about
�45�. The magnitude and phase angle are then plotted at 2 rad/s in Figure 10.4 on the
separate magnitude and phase curves.

Skill-Assessment Exercise 10.1

PROBLEM:

a. Find analytical expressions for the magnitude and phase responses of

GðsÞ ¼ 1

ðsþ 2Þðsþ 4Þ

0
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FIGURE 10.5 Frequency response plot for GðsÞ ¼ 1=ðsþ 2Þ: polar plot
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b. Make plots of the log-magnitude and the phase, using log-frequency in rad/s
as the ordinate.

c. Make a polar plot of the frequency response.

ANSWERS:

a. MðvÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8 � v2Þ2 þ ð6vÞ2

q ; for v � ffiffiffi
8

p
: fðvÞ ¼ �arctan

6v

8 � v2

� �
, for

v >
ffiffiffi
8

p
: fðvÞ ¼ � pþ arctan

6v

8 � v2

� �� �

b. See the answer at www.wiley.com/college/nise.

c. See the answer at www.wiley.com/college/nise.

The complete solution is at www.wiley.com/college/nise.

In this section, we defined frequency response and saw how to obtain an
analytical expression for the frequency response of a system simply by substituting
s ¼ jv into G(s). We also saw how to make a plot of GðjvÞ. The next section shows
how to approximate the magnitude and phase plots in order to sketch them
rapidly.

10.2 Asymptotic Approximations: Bode Plots

The log-magnitude and phase frequency response curves as functions of log v are
called Bode plots or Bode diagrams. Sketching Bode plots can be simplified because
they can be approximated as a sequence of straight lines. Straight-line approxima-
tions simplify the evaluation of the magnitude and phase frequency response.

Consider the following transfer function:

GðsÞ ¼ Kðsþ z1Þðsþ z2Þ � � � ðsþ zkÞ
smðsþ p1Þðsþ p2Þ � � � ðsþ pnÞ

ð10:13Þ

The magnitude frequency response is the product of the magnitude frequency
responses of each term, or

jGðjvÞj ¼ Kjðsþ z1Þjjðsþ z2Þj � � � jðsþ zkÞj
jsmjjðsþ p1Þjjðsþ p2Þj � � � jðsþ pnÞj

����
s!jv

ð10:14Þ

Thus, if we know the magnitude response of each pole and zero term, we can find the
total magnitude response. The process can be simplified by working with the
logarithm of the magnitude since the zero terms’ magnitude responses would be
added and the pole terms’ magnitude responses subtracted, rather than, respectively,
multiplied or divided, to yield the logarithm of the total magnitude response.
Converting the magnitude response into dB, we obtain

20 log jGðjvÞj ¼ 20 log K þ 20 log jðsþ z1Þj þ 20 log jðsþ z2Þj
þ � � � � 20 log jsmj � 20 log jðsþ p1Þj � � � � js!jv

ð10:15Þ
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Thus, if we knew the response of each term, the algebraic sum would yield the total
response in dB. Further, if we could make an approximation of each term that would
consist only of straight lines, graphical addition of terms would be greatly simplified.

Before proceeding, let us look at the phase response. From Eq. (10.13), the
phase frequency response is the sum of the phase frequency response curves of the
zero terms minus the sum of the phase frequency response curves of the pole terms.
Again, since the phase response is the sum of individual terms, straight-line
approximations to these individual responses simplify graphical addition.

Let us now show how to approximate the frequency response of simple pole
and zero terms by straight-line approximations. Later we show how to combine these
responses to sketch the frequency response of more complicated functions. In
subsequent sections, after a discussion of the Nyquist stability criterion, we learn
how to use the Bode plots for the analysis and design of stability and transient
response.

Bode Plots for G(s) ¼ (s þ a)
Consider a function, GðsÞ ¼ ðsþ aÞ, for which we want to sketch separate logarith-
mic magnitude and phase response plots. Letting s ¼ jv, we have

Gð jvÞ ¼ ðjvþ aÞ ¼ a j
v

a
þ 1

� 	
ð10:16Þ

At low frequencies when v approaches zero,

Gð jvÞ 	 a ð10:17Þ
The magnitude response in dB is

20 log M ¼ 20 log a ð10:18Þ
where M ¼ jGðjvÞj and is a constant. Eq. (10.18) is shown plotted in Figure 10.6(a)
from v ¼ 0:01a to a.

At high frequencies where v 
 a, Eq. (10.16) becomes

GðjvÞ 	 a
jv

a

� �
¼ a

v

a

� 	
— 90� ¼ v—90� ð10:19Þ

The magnitude response in dB is

20 log M ¼ 20 log aþ 20 log
v

a
¼ 20 log v ð10:20Þ

where a < v < 1. Notice from the middle term that the high-frequency approxi-
mation is equal to the low-frequency approximation when v ¼ a, and increases
for v > a.

If we plot dB, 20 log M, against log v, Eq. (10.20) becomes a straight line:

y ¼ 20x ð10:21Þ
where y ¼ 20 log M; and x ¼ log v. The line has a slope of 20 when plotted as dB vs.
log v.

Since each doubling of frequency causes 20 log v to increase by 6 dB, the line
rises at an equivalent slope of 6 dB/octave, where an octave is a doubling of
frequency. This rise begins at v ¼ a, where the low-frequency approximation equals
the high-frequency approximation.
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We call the straight-line approximations asymptotes. The low-frequency ap-
proximation is called the low-frequency asymptote, and the high-frequency approxi-
mation is called the high-frequency asymptote. The frequency, a, is called the break
frequency because it is the break between the low- and the high-frequency
asymptotes.

Many times it is convenient to draw the line over a decade rather than an
octave, where a decade is 10 times the initial frequency. Over one decade, 20 log v

increases by 20 dB. Thus, a slope of 6 dB/octave is equivalent to a slope of 20 dB/
decade. The plot is shown in Figure 10.6(a) from v ¼ 0:01a to 100a.

Let us now turn to the phase response, which can be drawn as follows. At the
break frequency, a, Eq. (10.16) shows the phase to be 45�. At low frequencies,
Eq. (10.17) shows that the phase is 0�. At high frequencies, Eq. (10.19) shows that the
phase is 90�. To draw the curve, start one decade ð1=10Þ below the break frequency,
0.1a, with 0� phase, and draw a line of slope þ45� /decade passing through 45� at the
break frequency and continuing to 90� one decade above the break frequency, 10a.
The resulting phase diagram is shown in Figure 10.6(b).

It is often convenient to normalize the magnitude and scale the frequency so
that the log-magnitude plot will be 0 dB at a break frequency of unity. Normalizing
and scaling helps in the following applications:

1. When comparing different first- or second-order frequency response plots, each
plot will have the same low-frequency asymptote after normalization and the
same break frequency after scaling.
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FIGURE 10.6 Bode plots of ðsþ aÞ: a. magnitude plot; b. phase plot
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2. When sketching the frequency response of a function such as Eq. (10.13), each
factor in the numerator and denominator will have the same low-frequency
asymptote after normalization. This common low-frequency asymptote makes it
easier to add components to obtain the Bode plot.

To normalize ðsþ aÞ, we factor out the quantity a and form a½ðs=aÞ þ 1�. The
frequency is scaled by defining a new frequency variable, s1 ¼ s=a. Then
the magnitude is divided by the quantity a to yield 0 dB at the break frequency.
Hence, the normalized and scaled function is ðs1 þ 1Þ. To obtain the original
frequency response, the magnitude and frequency are multiplied by the quantity a.

We now use the concepts of normalization and scaling to compare the asymptotic
approximation to the actual magnitude and phase plot for ðsþ aÞ. Table 10.1 shows the
comparison for the normalized and scaled frequency response of ðsþ aÞ. Notice that
the actual magnitude curve is never greater than 3.01 dB from the asymptotes. This
maximum difference occurs at the break frequency. The maximum difference for the
phase curve is 5.71�, which occurs at the decades above and below the break frequency.
For convenience, the data in Table 10.1 is plotted in Figures 10.7 and 10.8.

We now find the Bode plots for other common transfer functions.

TABLE 10.1 Asymptotic and actual normalized and scaled frequency response data
for ðsþ aÞ
Frequency

a
20 log

M

a
(dB) Phase (degrees)

(rad/s) Asymptotic Actual Asymptotic Actual

0.01 0 0.00 0.00 0.57

0.02 0 0.00 0.00 1.15

0.04 0 0.01 0.00 2.29

0.06 0 0.02 0.00 3.43

0.08 0 0.03 0.00 4.57

0.1 0 0.04 0.00 5.71

0.2 0 0.17 13.55 11.31

0.4 0 0.64 27.09 21.80

0.6 0 1.34 35.02 30.96

0.8 0 2.15 40.64 38.66

1 0 3.01 45.00 45.00

2 6 6.99 58.55 63.43

4 12 12.30 72.09 75.96

6 15.56 15.68 80.02 80.54

8 18 18.13 85.64 82.87

10 20 20.04 90.00 84.29

20 26.02 26.03 90.00 87.14

40 32.04 32.04 90.00 88.57

60 35.56 35.56 90.00 89.05

80 38.06 38.06 90.00 89.28

100 40 40.00 90.00 89.43
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Bode Plots for G(s) ¼ 1/(sþa)
Let us find the Bode plots for the transfer function

GðsÞ ¼ 1

ðsþ aÞ ¼
1

a
s

a
þ 1

� 	 ð10:22Þ
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FIGURE 10.7 Asymptotic and actual normalized and scaled magnitude response of ðsþ aÞ
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FIGURE 10.8 Asymptotic and actual normalized and scaled phase response of ðsþ aÞ
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This function has a low-frequency asymptote of 20 log ð1=aÞ, which is found by
letting the frequency, s, approach zero. The Bode plot is constant until the break
frequency, a rad/s, is reached. The plot is then approximated by the high-frequency
asymptote found by letting s approach 1. Thus, at high frequencies

GðjvÞ ¼ 1

a
s

a

� 	
����
s!jv

¼ 1

a
jv

a

� � ¼
1

a
v

a

—� 90� ¼ 1

v
—� 90� ð10:23Þ

or, in dB,

20 log M ¼ 20 log
1

a
� 20 log

v

a
¼ �20 log v ð10:24Þ

Notice from the middle term that the high-frequency approximation equals the low-
frequency approximation when v ¼ a, and decreases for v > a. This result is similar
to Eq. (10.20), except the slope is negative rather than positive. The Bode log-
magnitude diagram will decrease at a rate of 20 dB/decade rather than increase at a
rate of 20 dB/decade after the break frequency.

The phase plot is the negative of the previous example since the function is the
inverse. The phase begins at 0� and reaches �90� at high frequencies, going through
�45� at the break frequency. Both the Bode normalized and scaled log-magnitude
and phase plot are shown in Figure 10.9(d).

Bode Plots for G(s)¼ s
Our next function, GðsÞ ¼ s, has only a high-frequency asymptote. Letting s ¼ jv,
the magnitude is 20 log v, which is the same as Eq. (10.20). Hence, the Bode
magnitude plot is a straight line drawn with a þ20 dB=decade slope passing through
zero dB when v ¼ 1. The phase plot, which is a constant þ90�, is shown with the
magnitude plot in Figure 10.9(a).

Bode Plots for G(s)¼1/s
The frequency response of the inverse of the preceding function, GðsÞ ¼ 1=s, is
shown in Figure 10.9(b) and is a straight line with a �20 dB=decade slope passing
through zero dB at v ¼ 1. The Bode phase plot is equal to a constant �90�.

We have covered four functions that have first-order polynomials in s in the
numerator or denominator. Before proceeding to second-order polynomials, let us

FIGURE 10.9 Normalized and
scaled Bode plots for
a.GðsÞ ¼ s;
b.GðsÞ ¼ 1=s;
(figure continues)
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look at an example of drawing the Bode plots for a function that consists of the
product of first-order polynomials in the numerator and denominator. The plots will
be made by adding together the individual frequency response curves.

Example 10.2

Bode Plots for Ratio of First-Order Factors

PROBLEM: Draw the Bode plots for the system shown in Figure 10.10, where
GðsÞ ¼ Kðsþ 3Þ=½sðsþ 1Þðsþ 2Þ�.
SOLUTION: We will make a Bode plot for the open-loop function
GðsÞ ¼ Kðsþ 3Þ=½sðsþ 1Þðsþ 2Þ�. The Bode plot is the sum of the Bode plots for
each first-order term. Thus, it is convenient to use the normalized plot for each of
these terms so that the low-frequency asymptote of each term, except the pole at the
origin, is at 0 dB, making it easier to add the components of the Bode plot. We rewrite
G(s) showing each term normalized to a low-frequency gain of unity. Hence,

GðsÞ ¼
3

2
K

s

3
þ 1

� 	

sðsþ 1Þ s

2
þ 1

� 	 ð10:25Þ

Now determine that the break frequencies are at 1, 2, and 3. The magnitude plot
should begin a decade below the lowest break frequency and extend a decade above
the highest break frequency. Hence, we choose 0.1 radian to 100 radians, or three
decades, as the extent of our plot.

Atv ¼ 0:1 the low-frequency value of the function is found from Eq. (10.25) using
the low-frequency values for all of the ½ðs=aÞ þ 1� terms, (that is, s ¼ 0) and the actual
value for the s term in the denominator. Thus, Gðj0:1Þ 	 3

2K=0:1 ¼ 15 K. The effect of
K is to move the magnitude curve up (increasing K) or down (decreasing K) by the
amount of 20 log K. K has no effect upon the phase curve. If we choose K ¼ 1, the
magnitude plot can be denormalized later for any value ofK that is calculated or known.

R(s) 

–

E(s)
G(s)

C(s)+

FIGURE 10.10 Closed-loop
unity feedback system

FIGURE 10.9 (Continued)
c.GðsÞ ¼ ðsþ aÞ;
d.GðsÞ ¼ 1=ðsþ aÞ
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Figure 10.11(a) shows each component of the Bode log-magnitude frequency
response. Summing the components yields the composite plot shown in Fig-
ure 10.11(b). The results are summarized in Table 10.2, which can be used to
obtain the slopes. Each pole and zero is itemized in the first column. Reading across
the table shows its contribution at each frequency. The last row is the sum of the
slopes and correlates with Figure 10.11(b). The Bode magnitude plot for K ¼ 1
starts atv ¼ 0:1 with a value of 20 log 15 ¼ 23:52 dB, and decreases immediately at a
rate of �20 dB=decade, due to the s term in the denominator. At v ¼ 1, the ðsþ 1Þ
term in the denominator begins its 20 dB=decade downward slope and causes an
additional 20 dB=decade negative slope, or a total of �40 dB=decade. At v ¼ 2, the
term ½ðs=2Þ þ 1� begins its�20 dB=decade slope, adding yet another�20 dB=decade
to the resultant plot, or a total of �60 dB=decade slope that continues until v ¼ 3.
At this frequency, the ½ðs=3Þ þ 1� term in the numerator begins its positive

40
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1
s + 1
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3 s + 1

3

FIGURE 10.11
Bode log-magnitude plot for
Example 10.2:
a. components;
b. composite

TABLE 10.2 Bode magnitude plot: slope contribution from each pole and zero in
Example 10.2

Frequency (rad/s)

Description
0.1 (Start:
Pole at 0)

1 (Start:
Pole at �1)

2 (Start:
Pole at �2)

3 (Start:
Zero at �3)

Pole at 0 �20 �20 �20 �20

Pole at �1 0 �20 �20 �20

Pole at �2 0 0 �20 �20

Zero at �3 0 0 0 20

Total slope (dB/dec) �20 �40 �60 �40
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20 dB=decade slope. The resultant magnitude plot, therefore, changes from a slope
of �60 dB=decade to �40 dB=decade at v ¼ 3, and continues at that slope since
there are no other break frequencies.

The slopes are easily drawn by sketching straight-line segments decreasing by
20 dB over a decade. For example, the initial �20 dB=decade slope is drawn from
23.52 dB atv ¼ 0:1, to 3.52 dB (a 20 dB decrease) atv ¼ 1. The�40 dB=decade slope
starting at v ¼ 1 is drawn by sketching a line segment from 3.52 dB at v ¼ 1, to
�36.48 dB (a 40 dB decrease) at v ¼ 10, and using only the portion from v ¼ 1 to
v ¼ 2. The next slope of �60 dB=decade is drawn by first sketching a line segment
from v ¼ 2 to v ¼ 20 (1 decade) that drops down by 60 dB, and using only that
portion of the line from v ¼ 2 to v ¼ 3. The final slope is drawn by sketching a line
segment fromv ¼ 3 tov ¼ 30 (1 decade) that drops by 40 dB. This slope continues to
the end of the plot.

Phase is handled similarly. However, the existence of breaks a decade below
and a decade above the break frequency requires a little more bookkeeping.
Table 10.3 shows the starting and stopping frequencies of the 45�=decade slope for

TABLE 10.3 Bode phase plot: slope contribution from each pole and zero in Example 10.2

Frequency (rad/s)

Description
0.1 (Start:
Pole at �1)

0.2 (Start:
Pole at �2)

0.3 (Start:
Pole at �3)

0 (End:
Pole at �1)

20 (End:
Pole at �2)

30 (End:
Zero at �3)

Pole at �1 �45 �45 �45 0
Pole at �2 �45 �45 �45 0
Zero at �3 45 45 45 0
Total slope (deg/dec) �45 �90 �45 0 45 0

FIGURE 10.12 Bode phase
plot for Example 10.2:
a. components;
b. composite (b)
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each of the poles and zeros. For example, reading across for the pole at �2, we see
that the �45� slope starts at a frequency of 0.2 and ends at 20. Filling in the rows for
each pole and then summing the columns yields the slope portrait of the resulting
phase plot. Looking at the row marked Total slope, we see that the phase plot will
have a slope of �45�=decade from a frequency of 0.1 to 0.2. The slope will then
increase to �90�=decade from 0.2 to 0.3. The slope will return to �45�=decade from
0.3 to 10 rad/s. A slope of 0 ensues from 10 to 20 rad/s, followed by a slope of
þ45�=decade from 20 to 30 rad/s. Finally, from 30 rad/s to infinity, the slope is
0�=decade.

The resulting component and composite phase plots are shown in Fig-
ure 10.12. Since the pole at the origin yields a constant �90� phase shift, the
plot begins at �90� and follows the slope portrait just described.

Bode Plots for G(s)¼ s2 þ 2zvnsþ v2
n

Now that we have covered Bode plots for first-order systems, we turn to the Bode
log-magnitude and phase plots for second-order polynomials in s. The second-order
polynomial is of the form

GðsÞ ¼ s2 þ 2zvnsþ v2
n ¼ v2

n

s2

v2
n

þ 2z
s

vn
þ 1

� �
ð10:26Þ

Unlike the first-order frequency response approximation, the difference between
the asymptotic approximation and the actual frequency response can be great for
some values of z. A correction to the Bode diagrams can be made to improve the
accuracy. We first derive the asymptotic approximation and then show the difference
between the asymptotic approximation and the actual frequency response curves.

At low frequencies, Eq. (10.26) becomes

GðsÞ 	 v2
n ¼ v2

n—0� ð10:27Þ

The magnitude, M, in dB at low frequencies therefore is

20 log M ¼ 20 log jGðjvÞj ¼ 20 log v2
n ð10:28Þ

At high frequencies,

GðsÞ 	 s2 ð10:29Þ

or

GðjvÞ 	 �v2 ¼ v2—180� ð10:30Þ

The log-magnitude is

20 log M ¼ 20 log jGðjvÞj ¼ 20 log v2 ¼ 40 log v ð10:31Þ

Equation (10.31) is a straight line with twice the slope of a first-order term (Eq.
(10.20)). Its slope is 12 dB/octave, or 40 dB/decade.
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The low-frequency asymptote (Eq. (10.27)) and the high-frequency asymptote
(Eq. (10.31)) are equal when v ¼ vn. Thus, vn is the break frequency for the second-
order polynomial.

For convenience in representing systems with different vn, we normalize and
scale our findings before drawing the asymptotes. Using the normalized and scaled
term of Eq. (10.26), we normalize the magnitude, dividing by v2

n, and scale the
frequency, dividing by vn. Thus, we plot Gðs1Þ=v2

n ¼ s2
1 þ 2zs1 þ 1, where

s1 ¼ s=vn. Gðs1Þ has a low-frequency asymptote at 0 dB and a break frequency of
1 rad/s. Figure 10.13(a) shows the asymptotes for the normalized and scaled magnitude
plot.

We now draw the phase plot. It is 0� at low frequencies (Eq. (10.27)) and 180� at
high frequencies (Eq. (10.30)). To find the phase at the natural frequency, first
evaluate GðjvÞ:

GðjvÞ ¼ s2 þ 2zvnsþ v2
njs!jv ¼ ðv2

n � v2Þ þ j2zvnv ð10:32Þ
Then find the function value at the natural frequency by substituting v ¼ vn. Since
the result is j2zv2

n, the phase at the natural frequency is þ90�. Figure 10.13(b) shows
the phase plotted with frequency scaled by vn. The phase plot increases at a rate of
90�=decade from 0.1 to 10 and passes through 90� at 1.

Corrections to Second-Order Bode Plots
Let us now examine the error between the actual response and the asymptotic
approximation of the second-order polynomial. Whereas the first-order polynomial
has a disparity of no more than 3.01 dB magnitude and 5.71� phase, the second-order
function may have a greater disparity, which depends upon the value of z.

FIGURE 10.13
Bode asymptotes for
normalized and scaled
GðsÞ ¼ s2 þ 2zvnsþ v2

n:
a. magnitude; b. phase
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From Eq. (10.32), the actual magnitude and phase for GðsÞ ¼ s2 þ 2zvnsþ v2
n

are, respectively,

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2

n � v2Þ2 þ ð2zvnvÞ2
q

ð10:33Þ

Phase ¼ tan� 1 2zvnv

v2
n � v2 ð10:34Þ

These relationships are tabulated in Table 10.4 for a range of values of z and plotted in
Figures 10.14 and 10.15 along with the asymptotic approximations for normalized

TABLE 10.4 Data for normalized and scaled log-magnitude and phase plots for ðs2 þ 2zvnsþ v2
nÞ. Mag ¼ 20 logðM=v2

nÞ
Freq.
v

vn

Mag (dB)
z ¼ 0:1

Phase (deg)
z ¼ 0:1

Mag (dB)
z ¼ 0:2

Phase (deg)
z ¼ 0:2

Mag (dB)
z ¼ 0:3

Phase (deg)
z ¼ 0:3

0.10 �0.09 1.16 �0.08 2.31 �0.07 3.47

0.20 �0.35 2.39 �0.32 4.76 �0.29 7.13

0.30 �0.80 3.77 �0.74 7.51 �0.65 11.19

0.40 �1.48 5.44 �1.36 10.78 �1.17 15.95

0.50 �2.42 7.59 �2.20 14.93 �1.85 21.80

0.60 �3.73 10.62 �3.30 20.56 �2.68 29.36

0.70 �5.53 15.35 �4.70 28.77 �3.60 39.47

0.80 �8.09 23.96 �6.35 41.63 �4.44 53.13

0.90 �11.64 43.45 �7.81 62.18 �4.85 70.62

1.00 �13.98 90.00 �7.96 90.00 �4.44 90.00

1.10 �10.34 133.67 �6.24 115.51 �3.19 107.65

1.20 �6.00 151.39 �3.73 132.51 �1.48 121.43

1.30 �2.65 159.35 �1.27 143.00 0.35 131.50

1.40 0.00 163.74 0.92 149.74 2.11 138.81

1.50 2.18 166.50 2.84 154.36 3.75 144.25

1.60 4.04 168.41 4.54 157.69 5.26 148.39

1.70 5.67 169.80 6.06 160.21 6.64 151.65

1.80 7.12 170.87 7.43 162.18 7.91 154.26

1.90 8.42 171.72 8.69 163.77 9.09 156.41

2.00 9.62 172.41 9.84 165.07 10.19 158.20

3.00 18.09 175.71 18.16 171.47 18.28 167.32

4.00 23.53 176.95 23.57 173.91 23.63 170.91

5.00 27.61 177.61 27.63 175.24 27.67 172.87

6.00 30.89 178.04 30.90 176.08 30.93 174.13

7.00 33.63 178.33 33.64 176.66 33.66 175.00

8.00 35.99 178.55 36.00 177.09 36.01 175.64

9.00 38.06 178.71 38.07 177.42 38.08 176.14

10.00 39.91 178.84 39.92 177.69 39.93 176.53

(table continues)
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magnitude and scaled frequency. In Figure 10.14, which is normalized to the square of the
natural frequency, the normalized log-magnitude at the scaled natural frequency is
þ20 log 2z. The student should verify that the actual magnitude at the unscaled natural
frequency isþ20 log 2zv2

n. Table 10.4 and Figures 10.14 and 10.15 can be used to improve
accuracy when drawing Bode plots. For example, a magnitude correction of þ20 log 2z
can be made at the natural, or break, frequency on the Bode asymptotic plot.

Bode Plots for G(s) ¼ 1=(s2 þ 2zvnsþ v2
n)

Bode plots for GðsÞ ¼ 1=ðs2 þ 2zvnsþ v2
nÞ can be derived similarly to those for

GðsÞ ¼ s2 þ 2zvnsþ v2
n. We find that the magnitude curve breaks at the natural

frequency and decreases at a rate of �40 dB=decade. The phase plot is 0� at low

0.10 �0.04 5.77 0.00 8.05 0.09 11.42

0.20 �0.17 11.77 0.00 16.26 0.34 22.62

0.30 �0.37 18.25 0.02 24.78 0.75 33.40

0.40 �0.63 25.46 0.08 33.69 1.29 43.60

0.50 �0.90 33.69 0.22 43.03 1.94 53.13

0.60 �1.14 43.15 0.47 52.70 2.67 61.93

0.70 �1.25 53.92 0.87 62.51 3.46 69.98

0.80 �1.14 65.77 1.41 72.18 4.30 77.32

0.90 �0.73 78.08 2.11 81.42 5.15 83.97

1.00 0.00 90.00 2.92 90.00 6.02 90.00

1.10 0.98 100.81 3.83 97.77 6.89 95.45

1.20 2.13 110.14 4.79 104.68 7.75 100.39

1.30 3.36 117.96 5.78 110.76 8.60 104.86

1.40 4.60 124.44 6.78 116.10 9.43 108.92

1.50 5.81 129.81 7.76 120.76 10.24 112.62

1.60 6.98 134.27 8.72 124.85 11.03 115.99

1.70 8.10 138.03 9.66 128.45 11.80 119.07

1.80 9.17 141.22 10.56 131.63 12.55 121.89

1.90 10.18 143.95 11.43 134.46 13.27 124.48

2.00 11.14 146.31 12.26 136.97 13.98 126.87

3.00 18.63 159.44 19.12 152.30 20.00 143.13

4.00 23.82 165.07 24.09 159.53 24.61 151.93

5.00 27.79 168.23 27.96 163.74 28.30 157.38

6.00 31.01 170.27 31.12 166.50 31.36 161.08

7.00 33.72 171.70 33.80 168.46 33.98 163.74

8.00 36.06 172.76 36.12 169.92 36.26 165.75

9.00 38.12 173.58 38.17 171.05 38.28 167.32

10.00 39.96 174.23 40.00 171.95 40.09 168.58

TABLE 10.4 Data for normalized and scaled log-magnitude and phase plots for ðs2 þ 2zvnsþ v2
nÞ. Mag ¼ 20 logðM=v2

nÞ
(Continued)

Freq.
v

vn

Mag (dB)
z ¼ 0:5

Phase (deg)
z ¼ 0:5

Mag (dB)
z ¼ 0:7

Phase (deg)
z ¼ 0:7

Mag (dB)
z ¼ 0:1

Phase (deg)
z ¼ 0:1
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frequencies. At 0:1vn it begins a decrease of �90�=decade and continues until
v ¼ 10vn, where it levels off at �180�.

The exact frequency response also follows the same derivation as that of
GðsÞ ¼ s2 þ 2zvnsþ v2

n. The results are summarized in Table 10.5, as well as Fig-
ures 10.16 and 10.17. The exact magnitude is the reciprocal of Eq. (10.33), and the
exact phase is the negative of Eq. (10.34). The normalized magnitude at the scaled
natural frequency is �20 log 2z, which can be used as a correction at the break
frequency on the Bode asymptotic plot.
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FIGURE 10.14 Normalized and scaled log-magnitude response for ðs2 þ 2zvnsþ v2
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TABLE 10.5 Data for normalized and scaled log-magnitude and phase plots for 1=ðs2 þ 2zvnsþ v2
nÞ. Mag ¼ 20 logðM=v2

nÞ
Freq.
v

vn

Mag (dB)
z ¼ 0:1

Phase (deg)
z ¼ 0:1

Mag (dB)
z ¼ 0:2

Phase (deg)
z ¼ 0:2

Mag (dB)
z ¼ 0:3

Phase (deg)
z ¼ 0:3

0.10 0.09 �1.16 0.08 �2.31 0.07 �3.47

0.20 0.35 �2.39 0.32 �4.76 0.29 �7.13

0.30 0.80 �3.77 0.74 �7.51 0.65 �11.19

0.40 1.48 �5.44 1.36 �10.78 1.17 �15.95

0.50 2.42 �7.59 2.20 �14.93 1.85 �21.80

0.60 3.73 �10.62 3.30 �20.56 2.68 �29.36

0.70 5.53 �15.35 4.70 �28.77 3.60 �39.47

0.80 8.09 �23.96 6.35 �41.63 4.44 �53.13

0.90 11.64 �43.45 7.81 �62.18 4.85 �70.62

1.00 13.98 �90.00 7.96 �90.00 4.44 �90.00

1.10 10.34 �133.67 6.24 �115.51 3.19 �107.65

1.20 6.00 �151.39 3.73 �132.51 1.48 �121.43

1.30 2.65 �159.35 1.27 �143.00 �0.35 �131.50

1.40 0.00 �163.74 �0.92 �149.74 �2.11 �138.81

1.50 �2.18 �166.50 �2.84 �154.36 �3.75 �144.25

1.60 �4.04 �168.41 �4.54 �157.69 �5.26 �148.39

1.70 �5.67 �169.80 �6.06 �160.21 �6.64 �151.65

1.80 �7.12 �170.87 �7.43 �162.18 �7.91 �154.26

1.90 �8.42 �171.72 �8.69 �163.77 �9.09 �156.41

2.00 �9.62 �172.41 �9.84 �165.07 �10.19 �158.20

3.00 �18.09 �175.71 �18.16 �171.47 �18.28 �167.32

4.00 �23.53 �176.95 �23.57 �173.91 �23.63 �170.91

5.00 �27.61 �177.61 �27.63 �175.24 �27.67 �172.87

6.00 �30.89 �178.04 �30.90 �176.08 �30.93 �174.13

7.00 �33.63 �178.33 �33.64 �176.66 �33.66 �175.00

8.00 �35.99 �178.55 �36.00 �177.09 �36.01 �175.64

9.00 �38.06 �178.71 �38.07 �177.42 �38.08 �176.14

10.00 �39.91 �178.84 �39.92 �177.69 �39.93 �176.53

(table continues)
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0.10 0.04 �5.77 0.00 �8.05 �0.09 �11.42

0.20 0.17 �11.77 0.00 �16.26 �0.34 �22.62

0.30 0.37 �18.25 �0.02 �24.78 �0.75 �33.40

0.40 0.63 �25.46 �0.08 �33.69 �1.29 �43.60

0.50 0.90 �33.69 �0.22 �43.03 �1.94 �53.13

0.60 1.14 �43.15 �0.47 �52.70 �2.67 �61.93

0.70 1.25 �53.92 �0.87 �62.51 �3.46 �69.98

0.80 1.14 �65.77 �1.41 �72.18 �4.30 �77.32

0.90 0.73 �78.08 �2.11 �81.42 �5.15 �83.97

1.00 0.00 �90.00 �2.92 �90.00 �6.02 �90.00

1.10 �0.98 �100.81 �3.93 �97.77 �6.89 �95.45

1.20 �2.13 �110.14 �4.79 �104.68 �7.75 �100.39

1.30 �3.36 �117.96 �5.78 �110.76 �8.60 �104.86

1.40 �4.60 �124.44 �6.78 �116.10 �9.43 �108.92

1.50 �5.81 �129.81 �7.76 �120.76 �10.24 �112.62

1.60 �6.98 �134.27 �8.72 �124.85 �11.03 �115.99

1.70 �8.10 �138.03 �9.66 �128.45 �11.80 �119.07

1.80 �9.17 �141.22 �10.56 �131.63 �12.55 �121.89

1.90 �10.18 �143.95 �11.43 �134.46 �13.27 �124.48

2.00 �11.14 �146.31 �12.26 �136.97 �13.98 �126.87

3.00 �18.63 �159.44 �19.12 �152.30 �20.00 �143.13

4.00 �23.82 �165.07 �24.09 �159.53 �24.61 �151.93

5.00 �27.79 �168.23 �27.96 �163.74 �28.30 �157.38

6.00 �31.01 �170.27 �31.12 �166.50 �31.36 �161.08

7.00 �33.72 �171.70 �33.80 �168.46 �33.98 �163.74

8.00 �36.06 �172.76 �36.12 �169.92 �36.26 �165.75

9.00 �38.12 �173.58 �38.17 �171.05 �38.28 �167.32

10.00 �39.96 �174.23 �40.00 �171.95 �40.09 �168.58

TABLE 10.5 Data for normalized and scaled log-magnitude and phase plots for 1=ðs2 þ 2zvnsþ v2
nÞ. Mag ¼ 20 logðM=v2

nÞ
(Continued)

Freq.
v

vn

Mag (dB)
z ¼ 0:5

Phase (deg)
z ¼ 0:5

Mag (dB)
z ¼ 0:7

Phase (deg)
z ¼ 0:7

Mag (dB)
z ¼ 0:1

Phase (deg)
z ¼ 0:1
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Let us now look at an example of drawing Bode plots for transfer functions that
contain second-order factors.

Example 10.3

Bode Plots for Ratio of First- and Second-Order Factors

PROBLEM: Draw the Bode log-magnitude and phase plots of G(s) for the unity
feedback system shown in Figure 10.10, whereGðsÞ ¼ ðsþ 3Þ=½ðsþ 2Þðs2 þ 2sþ 25Þ�.
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FIGURE 10.16 Normalized and scaled log-magnitude response for 1=ðs2 þ 2zvnsþ v2
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FIGURE 10.17 Scaled phase response for 1=ðs2 þ 2zvnsþ v2
nÞ
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SOLUTION: We first convert G(s) to show the normalized components that have
unity low-frequency gain. The second-order term is normalized by factoring out v2

n,
forming

s2

v2
n

þ 2z

vn
sþ 1 ð10:35Þ

Thus,

GðsÞ ¼ 3

ð2Þð25Þ

s

3
þ 1

� 	

s

2
þ 1

� 	 s2

25
þ 2

25
sþ 1

� � ¼ 3

50

s

2
þ 1

� 	

s

2
þ 1

� 	 s2

25
þ 2

25
sþ 1

� � ð10:36Þ

The Bode log-magnitude diagram is shown in Figure 10.18(b) and is the sum
of the individual first- and second-order terms of G(s) shown in Figure 10.18(a). We
solve this problem by adding the slopes of these component parts, beginning and
ending at the appropriate frequencies. The results are summarized in Table 10.6,
which can be used to obtain the slopes. The low-frequency value for G(s), found by

(b)
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FIGURE 10.18
Bode magnitude plot for
GðsÞ ¼ ðsþ 3Þ=
½ðsþ 2Þðs2 þ 2sþ 25Þ�:
a. components;
b. composite

TABLE 10.6 Magnitude diagram slopes for Example 10.3

Frequency (rad/s)

Description

0.01
(Start:
Plot)

2
(Start:

Pole at �2)

3
(Start:

Zero at �3)

5
(Start:
vn ¼ 5)

Pole at �2 0 �20 �20 �20

Zero at �3 0 0 20 20

vn ¼ 5 0 0 0 �40

Total slope (dB/dec) 0 �20 0 �40
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letting s ¼ 0, is 3/50, or �24.44 dB. The Bode magnitude plot starts out at this
value and continues until the first break frequency at 2 rad/s. Here the pole at �2
yields a �20 dB=decade slope downward until the next break at 3 rad/s. The zero
at �3 causes an upward slope of þ20 dB=decade, which, when added to the
previous �20 dB=decade curve, gives a net slope of 0. At a frequency of 5 rad/s,
the second-order term initiates a �40 dB=decade downward slope, which con-
tinues to infinity.

The correction to the log-magnitude curve due to the underdamped second-
order term can be found by plotting a point �20 log 2z above the asymptotes at the
natural frequency. Since z ¼ 0:2 for the second-order term in the denominator of
G(s), the correction is 7.96 dB. Points close to the natural frequency can be
corrected by taking the values from the curves of Figure 10.16.

TABLE 10.7 Phase diagram slopes for Example 10.3

Frequency (rad/s)

Description

0.2
(Start:

Pole at �2)

0.3
(Start:

Zero at �3)

0.5
(Start:

vn at �5)

20
(End:

Pole at �2)

30
(End:

Zero at �3)

50
(End:
vn ¼ 5)

Pole at �2 �45 �45 �45 0

Zero at �3 45 45 45 0

vn ¼ 5 �90 �90 �90 0

Total slope (dB/dec) �45 0 �90 �45 �90 0

FIGURE 10.19 Bode phase
plot for GðsÞ ¼ ðsþ 3Þ=
½ðsþ 2Þðs2 þ 2sþ 25Þ�:
a. components;
b. composite
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We now turn to the phase plot. Table 10.7 is formed to determine the
progression of slopes on the phase diagram. The first-order pole at �2 yields a
phase angle that starts at 0� and ends at �90� via a �45�=decade slope starting a
decade below its break frequency and ending a decade above its break frequency.
The first-order zero yields a phase angle that starts at 0� and ends at þ90� via a
þ45�=decade slope starting a decade below its break frequency and ending a
decade above its break frequency. The second-order poles yield a phase angle that
starts at 0� and ends at �180� via a �90�=decade slope starting a decade below their
natural frequency ðvn ¼ 5Þ and ending a decade above their natural frequency. The
slopes, shown in Figure 10.19(a), are summed over each frequency range, and the
final Bode phase plot is shown in Figure 10.19(b).

Students who are using MATLAB should now run ch10p1 in Appendix B.
You will learn how to use MATLAB to make Bode plots and list the
pointsontheplots.ThisexercisesolvesExample10.3usingMATLAB.

Skill-Assessment Exercise 10.2

PROBLEM: Draw the Bode log-magnitude and phase plots for the system shown in
Figure 10.10, where

GðsÞ ¼ ðsþ 20Þ
ðsþ 1Þðsþ 7Þðsþ 50Þ

ANSWER: The complete solution is at www.wiley.com/college/nise.

In this section, we learned how to construct Bode log-magnitude and Bode
phase plots. The Bode plots are separate magnitude and phase frequency response
curves for a system, G(s). In the next section, we develop the Nyquist criterion for
stability, which makes use of the frequency response of a system. The Bode plots can
then be used to determine the stability of a system.

10.3 Introduction to the Nyquist
Criterion

The Nyquist criterion relates the stability of a closed-loop system to the open-loop
frequency response and open-loop pole location. Thus, knowledge of the open-
loop system’s frequency response yields information about the stability of the
closed-loop system. This concept is similar to the root locus, where we began
with information about the open-loop system, its poles and zeros, and developed
transient and stability information about the closed-loop system.

TryIt 10.1

Use MATLAB, the Control
System Toolbox, and the fol-
lowing statements to obtain the
Bode plots for the system of
Skill-Assessment Exercise 10.2

G=zpk([�20],[�l,�7,...
�50],1)
bode(G);grid on

After the Bode plots appear,
click on the curve and drag to
read the coordinates.
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